Whisper-WebUI / modules /whisper_Inference.py
jhj0517
add compute_type dropdown
00efe30
raw
history blame
18.1 kB
import whisper
import gradio as gr
import time
import os
from typing import BinaryIO, Union, Tuple
import numpy as np
from datetime import datetime
import torch
from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
DEFAULT_MODEL_SIZE = "large-v2"
class WhisperInference(BaseInterface):
def __init__(self):
super().__init__()
self.current_model_size = None
self.model = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.available_compute_types = ["float16", "float32"]
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
self.default_beam_size = 1
def transcribe_file(self,
fileobjs: list,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
compute_type: str,
progress=gr.Progress()):
"""
Write subtitle file from Files
Parameters
----------
fileobjs: list
List of files to transcribe from gr.Files()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
compute_type: str
compute type from gr.Dropdown().
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
try:
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
files_info = {}
for fileobj in fileobjs:
progress(0, desc="Loading Audio..")
audio = whisper.load_audio(fileobj.name)
result, elapsed_time = self.transcribe(audio=audio,
lang=lang,
istranslate=istranslate,
beam_size=beam_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
compute_type=compute_type,
progress=progress
)
progress(1, desc="Completed!")
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
file_name = safe_filename(file_name)
subtitle = self.generate_and_write_subtitle(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
subformat=subformat
)
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
total_result = ''
total_time = 0
for file_name, info in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f"{info['subtitle']}"
total_time += info["elapsed_time"]
return f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
except Exception as e:
print(f"Error transcribing file: {str(e)}")
return f"Error transcribing file: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([fileobj.name for fileobj in fileobjs])
def transcribe_youtube(self,
youtubelink: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
compute_type: str,
progress=gr.Progress()):
"""
Write subtitle file from Youtube
Parameters
----------
youtubelink: str
Link of Youtube to transcribe from gr.Textbox()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
compute_type: str
compute type from gr.Dropdown().
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
try:
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtubelink)
audio = whisper.load_audio(get_ytaudio(yt))
result, elapsed_time = self.transcribe(audio=audio,
lang=lang,
istranslate=istranslate,
beam_size=beam_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
compute_type=compute_type,
progress=progress)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle = self.generate_and_write_subtitle(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
subformat=subformat
)
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
print(f"Error transcribing youtube video: {str(e)}")
return f"Error transcribing youtube video: {str(e)}"
finally:
try:
if 'yt' not in locals():
yt = get_ytdata(youtubelink)
file_path = get_ytaudio(yt)
else:
file_path = get_ytaudio(yt)
self.release_cuda_memory()
self.remove_input_files([file_path])
except Exception as cleanup_error:
pass
def transcribe_mic(self,
micaudio: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
compute_type: str,
progress=gr.Progress()):
"""
Write subtitle file from microphone
Parameters
----------
micaudio: str
Audio file path from gr.Microphone()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
compute_type: str
compute type from gr.Dropdown().
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
try:
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
result, elapsed_time = self.transcribe(audio=micaudio,
lang=lang,
istranslate=istranslate,
beam_size=beam_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
compute_type=compute_type,
progress=progress)
progress(1, desc="Completed!")
subtitle = self.generate_and_write_subtitle(
file_name="Mic",
transcribed_segments=result,
add_timestamp=True,
subformat=subformat
)
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
print(f"Error transcribing mic: {str(e)}")
return f"Error transcribing mic: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([micaudio])
def transcribe(self,
audio: Union[str, np.ndarray, torch.Tensor],
lang: str,
istranslate: bool,
beam_size: int,
log_prob_threshold: float,
no_speech_threshold: float,
compute_type: str,
progress: gr.Progress
) -> Tuple[list[dict], float]:
"""
transcribe method for OpenAI's Whisper implementation.
Parameters
----------
audio: Union[str, BinaryIO, torch.Tensor]
Audio path or file binary or Audio numpy array
lang: str
Source language of the file to transcribe from gr.Dropdown()
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
beam_size: int
Int value from gr.Number() that is used for decoding option.
log_prob_threshold: float
float value from gr.Number(). If the average log probability over sampled tokens is
below this value, treat as failed.
no_speech_threshold: float
float value from gr.Number(). If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
compute_type: str
compute type from gr.Dropdown().
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
segments_result: list[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
if lang == "Automatic Detection":
lang = None
translatable_model = ["large", "large-v1", "large-v2"]
segments_result = self.model.transcribe(audio=audio,
language=lang,
verbose=False,
beam_size=beam_size,
logprob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
fp16=True if compute_type == "float16" else False,
progress_callback=progress_callback)["segments"]
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model_if_needed(self,
model_size: str,
compute_type: str,
progress: gr.Progress,
):
"""
Initialize model if it doesn't match with current model setting
"""
if compute_type != self.current_compute_type:
self.current_compute_type = compute_type
if model_size != self.current_model_size or self.model is None:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(
name=model_size,
device=self.device,
download_root=os.path.join("models", "Whisper")
)
@staticmethod
def generate_and_write_subtitle(file_name: str,
transcribed_segments: list,
add_timestamp: bool,
subformat: str,
) -> str:
"""
This method writes subtitle file and returns str to gr.Textbox
"""
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if subformat == "SRT":
subtitle = get_srt(transcribed_segments)
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(transcribed_segments)
write_file(subtitle, f"{output_path}.vtt")
return subtitle
@staticmethod
def format_time(elapsed_time: float) -> str:
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
if hours:
time_str += f"{hours} hours "
if minutes:
time_str += f"{minutes} minutes "
seconds = round(seconds)
time_str += f"{seconds} seconds"
return time_str.strip()