Spaces:
Running
Running
import gradio as gr | |
import os | |
import argparse | |
from modules.whisper_Inference import WhisperInference | |
from modules.faster_whisper_inference import FasterWhisperInference | |
from modules.insanely_fast_whisper_inference import InsanelyFastWhisperInference | |
from modules.nllb_inference import NLLBInference | |
from ui.htmls import * | |
from modules.youtube_manager import get_ytmetas | |
from modules.deepl_api import DeepLAPI | |
from modules.whisper_parameter import * | |
class App: | |
def __init__(self, args): | |
self.args = args | |
self.app = gr.Blocks(css=CSS, theme=self.args.theme) | |
self.whisper_inf = self.init_whisper() | |
print(f"Use \"{self.args.whisper_type}\" implementation") | |
print(f"Device \"{self.whisper_inf.device}\" is detected") | |
self.nllb_inf = NLLBInference( | |
model_dir=self.args.nllb_model_dir, | |
output_dir=self.args.output_dir | |
) | |
self.deepl_api = DeepLAPI( | |
output_dir=self.args.output_dir | |
) | |
def init_whisper(self): | |
whisper_type = self.args.whisper_type.lower().strip() | |
if whisper_type in ["faster_whisper", "faster-whisper", "fasterwhisper"]: | |
whisper_inf = FasterWhisperInference( | |
model_dir=self.args.faster_whisper_model_dir, | |
output_dir=self.args.output_dir | |
) | |
elif whisper_type in ["whisper"]: | |
whisper_inf = WhisperInference( | |
model_dir=self.args.whisper_model_dir, | |
output_dir=self.args.output_dir | |
) | |
elif whisper_type in ["insanely_fast_whisper", "insanely-fast-whisper", "insanelyfastwhisper", | |
"insanely_faster_whisper", "insanely-faster-whisper", "insanelyfasterwhisper"]: | |
whisper_inf = InsanelyFastWhisperInference( | |
model_dir=self.args.insanely_fast_whisper_model_dir, | |
output_dir=self.args.output_dir | |
) | |
else: | |
whisper_inf = FasterWhisperInference( | |
model_dir=self.args.faster_whisper_model_dir, | |
output_dir=self.args.output_dir | |
) | |
return whisper_inf | |
def open_folder(folder_path: str): | |
if os.path.exists(folder_path): | |
os.system(f"start {folder_path}") | |
else: | |
print(f"The folder {folder_path} does not exist.") | |
def on_change_models(model_size: str): | |
translatable_model = ["large", "large-v1", "large-v2", "large-v3"] | |
if model_size not in translatable_model: | |
return gr.Checkbox(visible=False, value=False, interactive=False) | |
else: | |
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True) | |
def launch(self): | |
with self.app: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(MARKDOWN, elem_id="md_project") | |
with gr.Tabs(): | |
with gr.TabItem("File"): # tab1 | |
with gr.Row(): | |
input_file = gr.Files(type="filepath", label="Upload File here") | |
with gr.Row(): | |
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2", | |
label="Model") | |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs, | |
value="Automatic Detection", label="Language") | |
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format") | |
with gr.Row(): | |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True) | |
with gr.Row(): | |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True) | |
with gr.Accordion("Advanced_Parameters", open=False): | |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True) | |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True) | |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True) | |
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True) | |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True) | |
nb_patience = gr.Number(label="Patience", value=1, interactive=True) | |
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True) | |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True) | |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True) | |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True) | |
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)): | |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True) | |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5) | |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250) | |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999) | |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000) | |
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024) | |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400) | |
with gr.Accordion("Insanely Fast Whisper Parameters", open=False, visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)): | |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0) | |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0) | |
with gr.Row(): | |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary") | |
with gr.Row(): | |
tb_indicator = gr.Textbox(label="Output", scale=5) | |
files_subtitles = gr.Files(label="Downloadable output file", scale=3, interactive=False) | |
btn_openfolder = gr.Button('π', scale=1) | |
params = [input_file, dd_file_format, cb_timestamp] | |
whisper_params = WhisperParameters(model_size=dd_model, | |
lang=dd_lang, | |
is_translate=cb_translate, | |
beam_size=nb_beam_size, | |
log_prob_threshold=nb_log_prob_threshold, | |
no_speech_threshold=nb_no_speech_threshold, | |
compute_type=dd_compute_type, | |
best_of=nb_best_of, | |
patience=nb_patience, | |
condition_on_previous_text=cb_condition_on_previous_text, | |
initial_prompt=tb_initial_prompt, | |
temperature=sd_temperature, | |
compression_ratio_threshold=nb_compression_ratio_threshold, | |
vad_filter=cb_vad_filter, | |
threshold=sd_threshold, | |
min_speech_duration_ms=nb_min_speech_duration_ms, | |
max_speech_duration_s=nb_max_speech_duration_s, | |
min_silence_duration_ms=nb_min_silence_duration_ms, | |
window_size_sample=nb_window_size_sample, | |
speech_pad_ms=nb_speech_pad_ms, | |
chunk_length_s=nb_chunk_length_s, | |
batch_size=nb_batch_size) | |
btn_run.click(fn=self.whisper_inf.transcribe_file, | |
inputs=params + whisper_params.to_list(), | |
outputs=[tb_indicator, files_subtitles]) | |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None) | |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate]) | |
with gr.TabItem("Youtube"): # tab2 | |
with gr.Row(): | |
tb_youtubelink = gr.Textbox(label="Youtube Link") | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
img_thumbnail = gr.Image(label="Youtube Thumbnail") | |
with gr.Column(): | |
tb_title = gr.Label(label="Youtube Title") | |
tb_description = gr.Textbox(label="Youtube Description", max_lines=15) | |
with gr.Row(): | |
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2", | |
label="Model") | |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs, | |
value="Automatic Detection", label="Language") | |
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format") | |
with gr.Row(): | |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True) | |
with gr.Row(): | |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", | |
interactive=True) | |
with gr.Accordion("Advanced_Parameters", open=False): | |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True) | |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True) | |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True) | |
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True) | |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True) | |
nb_patience = gr.Number(label="Patience", value=1, interactive=True) | |
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True) | |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True) | |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True) | |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True) | |
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)): | |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True) | |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5) | |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250) | |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999) | |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000) | |
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024) | |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400) | |
with gr.Accordion("Insanely Fast Whisper Parameters", open=False, | |
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)): | |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0) | |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0) | |
with gr.Row(): | |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary") | |
with gr.Row(): | |
tb_indicator = gr.Textbox(label="Output", scale=5) | |
files_subtitles = gr.Files(label="Downloadable output file", scale=3) | |
btn_openfolder = gr.Button('π', scale=1) | |
params = [tb_youtubelink, dd_file_format, cb_timestamp] | |
whisper_params = WhisperParameters(model_size=dd_model, | |
lang=dd_lang, | |
is_translate=cb_translate, | |
beam_size=nb_beam_size, | |
log_prob_threshold=nb_log_prob_threshold, | |
no_speech_threshold=nb_no_speech_threshold, | |
compute_type=dd_compute_type, | |
best_of=nb_best_of, | |
patience=nb_patience, | |
condition_on_previous_text=cb_condition_on_previous_text, | |
initial_prompt=tb_initial_prompt, | |
temperature=sd_temperature, | |
compression_ratio_threshold=nb_compression_ratio_threshold, | |
vad_filter=cb_vad_filter, | |
threshold=sd_threshold, | |
min_speech_duration_ms=nb_min_speech_duration_ms, | |
max_speech_duration_s=nb_max_speech_duration_s, | |
min_silence_duration_ms=nb_min_silence_duration_ms, | |
window_size_sample=nb_window_size_sample, | |
speech_pad_ms=nb_speech_pad_ms, | |
chunk_length_s=nb_chunk_length_s, | |
batch_size=nb_batch_size) | |
btn_run.click(fn=self.whisper_inf.transcribe_youtube, | |
inputs=params + whisper_params.to_list(), | |
outputs=[tb_indicator, files_subtitles]) | |
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink], | |
outputs=[img_thumbnail, tb_title, tb_description]) | |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None) | |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate]) | |
with gr.TabItem("Mic"): # tab3 | |
with gr.Row(): | |
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True) | |
with gr.Row(): | |
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2", | |
label="Model") | |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs, | |
value="Automatic Detection", label="Language") | |
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format") | |
with gr.Row(): | |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True) | |
with gr.Accordion("Advanced_Parameters", open=False): | |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True) | |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True) | |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True) | |
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True) | |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True) | |
nb_patience = gr.Number(label="Patience", value=1, interactive=True) | |
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True) | |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True) | |
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True) | |
with gr.Accordion("VAD Options", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)): | |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True) | |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5) | |
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250) | |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999) | |
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000) | |
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024) | |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400) | |
with gr.Accordion("Insanely Fast Whisper Parameters", open=False, | |
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)): | |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0) | |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0) | |
with gr.Row(): | |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary") | |
with gr.Row(): | |
tb_indicator = gr.Textbox(label="Output", scale=5) | |
files_subtitles = gr.Files(label="Downloadable output file", scale=3) | |
btn_openfolder = gr.Button('π', scale=1) | |
params = [mic_input, dd_file_format] | |
whisper_params = WhisperParameters(model_size=dd_model, | |
lang=dd_lang, | |
is_translate=cb_translate, | |
beam_size=nb_beam_size, | |
log_prob_threshold=nb_log_prob_threshold, | |
no_speech_threshold=nb_no_speech_threshold, | |
compute_type=dd_compute_type, | |
best_of=nb_best_of, | |
patience=nb_patience, | |
condition_on_previous_text=cb_condition_on_previous_text, | |
initial_prompt=tb_initial_prompt, | |
temperature=sd_temperature, | |
compression_ratio_threshold=nb_compression_ratio_threshold, | |
vad_filter=cb_vad_filter, | |
threshold=sd_threshold, | |
min_speech_duration_ms=nb_min_speech_duration_ms, | |
max_speech_duration_s=nb_max_speech_duration_s, | |
min_silence_duration_ms=nb_min_silence_duration_ms, | |
window_size_sample=nb_window_size_sample, | |
speech_pad_ms=nb_speech_pad_ms, | |
chunk_length_s=nb_chunk_length_s, | |
batch_size=nb_batch_size) | |
btn_run.click(fn=self.whisper_inf.transcribe_mic, | |
inputs=params + whisper_params.to_list(), | |
outputs=[tb_indicator, files_subtitles]) | |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None) | |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate]) | |
with gr.TabItem("T2T Translation"): # tab 4 | |
with gr.Row(): | |
file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here", | |
file_types=['.vtt', '.srt']) | |
with gr.TabItem("DeepL API"): # sub tab1 | |
with gr.Row(): | |
tb_authkey = gr.Textbox(label="Your Auth Key (API KEY)", | |
value="") | |
with gr.Row(): | |
dd_deepl_sourcelang = gr.Dropdown(label="Source Language", value="Automatic Detection", | |
choices=list( | |
self.deepl_api.available_source_langs.keys())) | |
dd_deepl_targetlang = gr.Dropdown(label="Target Language", value="English", | |
choices=list( | |
self.deepl_api.available_target_langs.keys())) | |
with gr.Row(): | |
cb_deepl_ispro = gr.Checkbox(label="Pro User?", value=False) | |
with gr.Row(): | |
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary") | |
with gr.Row(): | |
tb_indicator = gr.Textbox(label="Output", scale=5) | |
files_subtitles = gr.Files(label="Downloadable output file", scale=3) | |
btn_openfolder = gr.Button('π', scale=1) | |
btn_run.click(fn=self.deepl_api.translate_deepl, | |
inputs=[tb_authkey, file_subs, dd_deepl_sourcelang, dd_deepl_targetlang, | |
cb_deepl_ispro], | |
outputs=[tb_indicator, files_subtitles]) | |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")), | |
inputs=None, | |
outputs=None) | |
with gr.TabItem("NLLB"): # sub tab2 | |
with gr.Row(): | |
dd_nllb_model = gr.Dropdown(label="Model", value="facebook/nllb-200-1.3B", | |
choices=self.nllb_inf.available_models) | |
dd_nllb_sourcelang = gr.Dropdown(label="Source Language", | |
choices=self.nllb_inf.available_source_langs) | |
dd_nllb_targetlang = gr.Dropdown(label="Target Language", | |
choices=self.nllb_inf.available_target_langs) | |
with gr.Row(): | |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", | |
interactive=True) | |
with gr.Row(): | |
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary") | |
with gr.Row(): | |
tb_indicator = gr.Textbox(label="Output", scale=5) | |
files_subtitles = gr.Files(label="Downloadable output file", scale=3) | |
btn_openfolder = gr.Button('π', scale=1) | |
with gr.Column(): | |
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table") | |
btn_run.click(fn=self.nllb_inf.translate_file, | |
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang, cb_timestamp], | |
outputs=[tb_indicator, files_subtitles]) | |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")), | |
inputs=None, | |
outputs=None) | |
# Launch the app with optional gradio settings | |
launch_args = {} | |
if self.args.share: | |
launch_args['share'] = self.args.share | |
if self.args.server_name: | |
launch_args['server_name'] = self.args.server_name | |
if self.args.server_port: | |
launch_args['server_port'] = self.args.server_port | |
if self.args.username and self.args.password: | |
launch_args['auth'] = (self.args.username, self.args.password) | |
if self.args.root_path: | |
launch_args['root_path'] = self.args.root_path | |
launch_args['inbrowser'] = True | |
self.app.queue(api_open=False).launch(**launch_args) | |
# Create the parser for command-line arguments | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--whisper_type', type=str, default="faster-whisper", help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]') | |
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value') | |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host') | |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port') | |
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path') | |
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username') | |
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password') | |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme') | |
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not') | |
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not') | |
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"), help='Directory path of the whisper model') | |
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"), help='Directory path of the faster-whisper model') | |
parser.add_argument('--insanely_fast_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "insanely-fast-whisper"), help='Directory path of the insanely-fast-whisper model') | |
parser.add_argument('--output_dir', type=str, default=os.path.join("outputs"), help='Directory path of the outputs') | |
_args = parser.parse_args() | |
if __name__ == "__main__": | |
app = App(args=_args) | |
app.launch() | |