Whisper-WebUI / modules /vad /silero_vad.py
jhj0517
add wildcard to the function
c1f12f6
raw
history blame
9.05 kB
from faster_whisper.vad import VadOptions, get_vad_model
import numpy as np
from typing import BinaryIO, Union, List, Optional
import warnings
import faster_whisper
import gradio as gr
class SileroVAD:
def __init__(self):
self.sampling_rate = 16000
self.window_size_samples = 512
self.model = None
def run(self,
audio: Union[str, BinaryIO, np.ndarray],
vad_parameters: VadOptions,
progress: gr.Progress = gr.Progress()):
"""
Run VAD
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
vad_parameters:
Options for VAD processing.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
audio: np.ndarray
Pre-processed audio with VAD
"""
sampling_rate = self.sampling_rate
if not isinstance(audio, np.ndarray):
audio = faster_whisper.decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
duration_after_vad = duration
if vad_parameters is None:
vad_parameters = VadOptions()
elif isinstance(vad_parameters, dict):
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = self.get_speech_timestamps(
audio=audio,
vad_options=vad_parameters,
progress=progress
)
audio = self.collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
return audio
def get_speech_timestamps(
self,
audio: np.ndarray,
vad_options: Optional[VadOptions] = None,
progress: gr.Progress = gr.Progress(),
**kwargs,
) -> List[dict]:
"""This method is used for splitting long audios into speech chunks using silero VAD.
Args:
audio: One dimensional float array.
vad_options: Options for VAD processing.
kwargs: VAD options passed as keyword arguments for backward compatibility.
progress: Gradio progress to indicate progress.
Returns:
List of dicts containing begin and end samples of each speech chunk.
"""
if self.model is None:
self.update_model()
if vad_options is None:
vad_options = VadOptions(**kwargs)
threshold = vad_options.threshold
min_speech_duration_ms = vad_options.min_speech_duration_ms
max_speech_duration_s = vad_options.max_speech_duration_s
min_silence_duration_ms = vad_options.min_silence_duration_ms
window_size_samples = self.window_size_samples
speech_pad_ms = vad_options.speech_pad_ms
sampling_rate = 16000
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
max_speech_samples = (
sampling_rate * max_speech_duration_s
- window_size_samples
- 2 * speech_pad_samples
)
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
audio_length_samples = len(audio)
state, context = self.model.get_initial_states(batch_size=1)
speech_probs = []
for current_start_sample in range(0, audio_length_samples, window_size_samples):
progress(current_start_sample/audio_length_samples, desc="Detecting speeches only using VAD...")
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
if len(chunk) < window_size_samples:
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
speech_prob, state, context = self.model(chunk, state, context, sampling_rate)
speech_probs.append(speech_prob)
triggered = False
speeches = []
current_speech = {}
neg_threshold = threshold - 0.15
# to save potential segment end (and tolerate some silence)
temp_end = 0
# to save potential segment limits in case of maximum segment size reached
prev_end = next_start = 0
for i, speech_prob in enumerate(speech_probs):
if (speech_prob >= threshold) and temp_end:
temp_end = 0
if next_start < prev_end:
next_start = window_size_samples * i
if (speech_prob >= threshold) and not triggered:
triggered = True
current_speech["start"] = window_size_samples * i
continue
if (
triggered
and (window_size_samples * i) - current_speech["start"] > max_speech_samples
):
if prev_end:
current_speech["end"] = prev_end
speeches.append(current_speech)
current_speech = {}
# previously reached silence (< neg_thres) and is still not speech (< thres)
if next_start < prev_end:
triggered = False
else:
current_speech["start"] = next_start
prev_end = next_start = temp_end = 0
else:
current_speech["end"] = window_size_samples * i
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
continue
if (speech_prob < neg_threshold) and triggered:
if not temp_end:
temp_end = window_size_samples * i
# condition to avoid cutting in very short silence
if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech:
prev_end = temp_end
if (window_size_samples * i) - temp_end < min_silence_samples:
continue
else:
current_speech["end"] = temp_end
if (
current_speech["end"] - current_speech["start"]
) > min_speech_samples:
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
continue
if (
current_speech
and (audio_length_samples - current_speech["start"]) > min_speech_samples
):
current_speech["end"] = audio_length_samples
speeches.append(current_speech)
for i, speech in enumerate(speeches):
if i == 0:
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
if i != len(speeches) - 1:
silence_duration = speeches[i + 1]["start"] - speech["end"]
if silence_duration < 2 * speech_pad_samples:
speech["end"] += int(silence_duration // 2)
speeches[i + 1]["start"] = int(
max(0, speeches[i + 1]["start"] - silence_duration // 2)
)
else:
speech["end"] = int(
min(audio_length_samples, speech["end"] + speech_pad_samples)
)
speeches[i + 1]["start"] = int(
max(0, speeches[i + 1]["start"] - speech_pad_samples)
)
else:
speech["end"] = int(
min(audio_length_samples, speech["end"] + speech_pad_samples)
)
return speeches
def update_model(self):
self.model = get_vad_model()
@staticmethod
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
"""Collects and concatenates audio chunks."""
if not chunks:
return np.array([], dtype=np.float32)
return np.concatenate([audio[chunk["start"]: chunk["end"]] for chunk in chunks])
@staticmethod
def format_timestamp(
seconds: float,
always_include_hours: bool = False,
decimal_marker: str = ".",
) -> str:
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return (
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
)