Spaces:
Running
Running
File size: 11,221 Bytes
63ab978 9cf2e86 91b9b83 2ff01cb 91b9b83 67cc6b1 63ab978 67cc6b1 5845bfc f9abd83 63ab978 9cf2e86 ccf78ae 63ab978 9cf2e86 ccf78ae 9cf2e86 63ab978 91b9b83 6074f61 a70c074 6074f61 ccf78ae 6074f61 67cc6b1 6074f61 67cc6b1 63ab978 9cf2e86 ccf78ae 6074f61 9cf2e86 ccf78ae 9cf2e86 6074f61 21c25c6 6074f61 a70c074 91b9b83 6074f61 21c25c6 91b9b83 21c25c6 91b9b83 21c25c6 91b9b83 21c25c6 6074f61 21c25c6 ccf78ae 21c25c6 40f2b57 21c25c6 40f2b57 21c25c6 6074f61 67cc6b1 6074f61 67cc6b1 91b9b83 9cf2e86 91b9b83 9cf2e86 63ab978 91b9b83 6074f61 a70c074 63ab978 6074f61 63ab978 6074f61 63ab978 6074f61 63ab978 6074f61 63ab978 6074f61 26a063c 63ab978 6074f61 91b9b83 6074f61 67cc6b1 6074f61 67cc6b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import whisper
import gradio as gr
import os
from datetime import datetime
from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
DEFAULT_MODEL_SIZE = "large-v2"
class WhisperInference(BaseInterface):
def __init__(self):
super().__init__()
self.current_model_size = None
self.model = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
def transcribe_file(self,
fileobjs: list,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
progress=gr.Progress()):
"""
Write subtitle file from Files
Parameters
----------
fileobjs: list
List of files to transcribe from gr.Files()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
try:
if model_size != self.current_model_size or self.model is None:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio..")
files_info = {}
for fileobj in fileobjs:
audio = whisper.load_audio(fileobj.name)
translatable_model = ["large", "large-v1", "large-v2"]
if istranslate and self.current_model_size in translatable_model:
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
progress_callback=progress_callback)
else:
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
progress_callback=progress_callback)
progress(1, desc="Completed!")
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
file_name = safe_filename(file_name)
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if subformat == "SRT":
subtitle = get_srt(result["segments"])
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(result["segments"])
write_file(subtitle, f"{output_path}.vtt")
files_info[file_name] = subtitle
total_result = ''
for file_name, subtitle in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f'{subtitle}'
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
except Exception as e:
return f"Error: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([fileobj.name for fileobj in fileobjs])
def transcribe_youtube(self,
youtubelink: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
progress=gr.Progress()):
"""
Write subtitle file from Youtube
Parameters
----------
youtubelink: str
Link of Youtube to transcribe from gr.Textbox()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
try:
if model_size != self.current_model_size or self.model is None:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtubelink)
audio = whisper.load_audio(get_ytaudio(yt))
translatable_model = ["large", "large-v1", "large-v2"]
if istranslate and self.current_model_size in translatable_model:
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
progress_callback=progress_callback)
else:
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
progress_callback=progress_callback)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if subformat == "SRT":
subtitle = get_srt(result["segments"])
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(result["segments"])
write_file(subtitle, f"{output_path}.vtt")
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
return f"Error: {str(e)}"
finally:
yt = get_ytdata(youtubelink)
file_path = get_ytaudio(yt)
self.release_cuda_memory()
self.remove_input_files([file_path])
def transcribe_mic(self,
micaudio: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
progress=gr.Progress()):
"""
Write subtitle file from microphone
Parameters
----------
micaudio: str
Audio file path from gr.Microphone()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
try:
if model_size != self.current_model_size or self.model is None:
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio..")
translatable_model = ["large", "large-v1", "large-v2"]
if istranslate and self.current_model_size in translatable_model:
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, task="translate",
progress_callback=progress_callback)
else:
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False,
progress_callback=progress_callback)
progress(1, desc="Completed!")
timestamp = datetime.now().strftime("%m%d%H%M%S")
output_path = os.path.join("outputs", f"Mic-{timestamp}")
if subformat == "SRT":
subtitle = get_srt(result["segments"])
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(result["segments"])
write_file(subtitle, f"{output_path}.vtt")
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
return f"Error: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([micaudio])
|