Spaces:
Running
Running
File size: 26,733 Bytes
63ab978 9cf2e86 a46b091 9cf2e86 f7d7f08 eeb8996 3fde2e0 63ab978 1d08db8 b8faf9d a526073 63ab978 9cf2e86 0f16dda eef1e47 eeb8996 6d9d096 eeb8996 6d9d096 eeb8996 1f79d6e 9cf2e86 1d08db8 736206b 9cf2e86 63ab978 9cf2e86 9cbb786 9cf2e86 5a1d3d2 9cf2e86 5a1d3d2 63ab978 9cf2e86 3fde2e0 9cf2e86 e3a7cef 9cf2e86 78f89c5 9cf2e86 b2f7849 9cf2e86 2ddb400 ccf78ae 2ddb400 ed10d53 a46b091 edcb1e1 e29f6b4 00efe30 84a6b12 c90f99f f314f4c b8faf9d 45fcb1d 9cf2e86 4b5f334 e3a7cef 9cf2e86 a526073 84a6b12 e12e640 b8faf9d 45fcb1d abc6224 edcb1e1 9cf2e86 a526073 e3a7cef 9cf2e86 78f89c5 9cf2e86 b2f7849 9cf2e86 ccf78ae ed10d53 a46b091 edcb1e1 e29f6b4 00efe30 84a6b12 c90f99f f314f4c b8faf9d 45fcb1d 9cf2e86 4b5f334 e3a7cef 9cf2e86 a526073 84a6b12 e12e640 b8faf9d 45fcb1d abc6224 edcb1e1 9cf2e86 a526073 e3a7cef 9cf2e86 78f89c5 9cf2e86 b2f7849 9cf2e86 ed10d53 a46b091 edcb1e1 e29f6b4 00efe30 84a6b12 c90f99f f314f4c b8faf9d 9cf2e86 4b5f334 e3a7cef 9cf2e86 a526073 84a6b12 e12e640 b8faf9d 45fcb1d abc6224 edcb1e1 9cf2e86 a526073 e3a7cef 9cf2e86 e3a7cef 9cf2e86 1d08db8 4b5f334 1d08db8 9cf2e86 ccf78ae 9cf2e86 4b5f334 e3a7cef 9cf2e86 ccf78ae e3a7cef 9cf2e86 35245db 9cf2e86 35245db da40b9a a46b091 35245db 3fde2e0 18639e5 9cf2e86 eeb8996 d7f2438 18639e5 d7f2438 0f16dda 29aee3c 0d39c53 6d9d096 9cf2e86 3fde2e0 9cf2e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import gradio as gr
import os
import argparse
import webbrowser
from modules.whisper_Inference import WhisperInference
from modules.faster_whisper_inference import FasterWhisperInference
from modules.nllb_inference import NLLBInference
from ui.htmls import *
from modules.youtube_manager import get_ytmetas
from modules.deepl_api import DeepLAPI
from modules.whisper_parameter import *
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS, theme=self.args.theme)
self.whisper_inf = WhisperInference() if self.args.disable_faster_whisper else FasterWhisperInference()
if isinstance(self.whisper_inf, FasterWhisperInference):
self.whisper_inf.model_dir = args.faster_whisper_model_dir
print("Use Faster Whisper implementation")
else:
self.whisper_inf.model_dir = args.whisper_model_dir
print("Use Open AI Whisper implementation")
print(f"Device \"{self.whisper_inf.device}\" is detected")
self.nllb_inf = NLLBInference()
self.deepl_api = DeepLAPI()
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
def launch(self):
with self.app:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Row():
input_file = gr.Files(type="filepath", label="Upload File here")
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
with gr.Accordion("VAD Options", open=False, visible=not self.args.disable_faster_whisper):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Advanced_Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3, interactive=False)
btn_openfolder = gr.Button('π', scale=1)
params = [input_file, dd_file_format, cb_timestamp]
whisper_params = WhisperGradioComponents(model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
window_size_sample=nb_window_size_sample,
speech_pad_ms=nb_speech_pad_ms)
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=params + whisper_params.to_list(),
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Accordion("VAD Options", open=False, visible=not self.args.disable_faster_whisper):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Advanced_Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [tb_youtubelink, dd_file_format, cb_timestamp]
whisper_params = WhisperGradioComponents(model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
window_size_sample=nb_window_size_sample,
speech_pad_ms=nb_speech_pad_ms)
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=params + whisper_params.to_list(),
outputs=[tb_indicator, files_subtitles])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Accordion("VAD Options", open=False, visible=not self.args.disable_faster_whisper):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5)
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Advanced_Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [mic_input, dd_file_format]
whisper_params = WhisperGradioComponents(model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
window_size_sample=nb_window_size_sample,
speech_pad_ms=nb_speech_pad_ms)
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=params + whisper_params.to_list(),
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("DeepL API"): # sub tab1
with gr.Row():
tb_authkey = gr.Textbox(label="Your Auth Key (API KEY)",
value="")
with gr.Row():
dd_deepl_sourcelang = gr.Dropdown(label="Source Language", value="Automatic Detection",
choices=list(
self.deepl_api.available_source_langs.keys()))
dd_deepl_targetlang = gr.Dropdown(label="Target Language", value="English",
choices=list(
self.deepl_api.available_target_langs.keys()))
with gr.Row():
cb_deepl_ispro = gr.Checkbox(label="Pro User?", value=False)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
btn_run.click(fn=self.deepl_api.translate_deepl,
inputs=[tb_authkey, file_subs, dd_deepl_sourcelang, dd_deepl_targetlang,
cb_deepl_ispro],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
inputs=None,
outputs=None)
with gr.TabItem("NLLB"): # sub tab2
with gr.Row():
dd_nllb_model = gr.Dropdown(label="Model", value=self.nllb_inf.default_model_size,
choices=self.nllb_inf.available_models)
dd_nllb_sourcelang = gr.Dropdown(label="Source Language",
choices=self.nllb_inf.available_source_langs)
dd_nllb_targetlang = gr.Dropdown(label="Target Language",
choices=self.nllb_inf.available_target_langs)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
inputs=None,
outputs=None)
# Launch the app with optional gradio settings
launch_args = {}
if self.args.share:
launch_args['share'] = self.args.share
if self.args.server_name:
launch_args['server_name'] = self.args.server_name
if self.args.server_port:
launch_args['server_port'] = self.args.server_port
if self.args.username and self.args.password:
launch_args['auth'] = (self.args.username, self.args.password)
launch_args['inbrowser'] = True
self.app.queue(api_open=False).launch(**launch_args)
# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--disable_faster_whisper', type=bool, default=False, nargs='?', const=True, help='Disable the faster_whisper implementation. faster_whipser is implemented by https://github.com/guillaumekln/faster-whisper')
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"), help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"), help='Directory path of the faster-whisper model')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|