Spaces:
Running
Running
File size: 32,952 Bytes
9cf2e86 a85ea1b 19c3dbd 9cf2e86 7d9eec3 711929b c1693be 2db409c ada247c c4e96e8 f79aae9 ada247c a526073 63ab978 9cf2e86 0f16dda 2db409c 2e08651 8126fce 2db409c 2d93272 184dab0 2d93272 f513345 2d93272 c1693be 711929b 19c3dbd c14cab5 19c3dbd 3ec9a9b 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 99bfa9a c14cab5 19c3dbd 364597e 19c3dbd 364597e 19c3dbd 20f9596 c14cab5 364597e 19c3dbd 364597e 19c3dbd 364597e 19c3dbd 364597e 19c3dbd 20f9596 364597e 19c3dbd 20f9596 19c3dbd 364597e c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 19c3dbd c14cab5 f636e83 a8c9eff f636e83 13fb3c5 f636e83 815f5df 19c3dbd c14cab5 19c3dbd 471a073 19c3dbd 471a073 19c3dbd 471a073 19c3dbd 471a073 c14cab5 19c3dbd c14cab5 20f9596 fbcbf8a 09fb62c c14cab5 9cf2e86 c1693be 545761a c1693be 9cf2e86 3fde2e0 9cf2e86 767d188 e3a7cef 767d188 a85ea1b 767d188 5a66e88 c14cab5 9cf2e86 4b5f334 e3a7cef 9cf2e86 767d188 9cf2e86 6148cfe e3a7cef 9cf2e86 5a66e88 c14cab5 9cf2e86 4b5f334 e3a7cef 9cf2e86 a526073 661e83c 9cf2e86 6148cfe e3a7cef 9cf2e86 5a66e88 c14cab5 5a66e88 9cf2e86 4b5f334 e3a7cef 9cf2e86 aad17fa 661e83c 9cf2e86 6148cfe e3a7cef 9cf2e86 e3a7cef 9cf2e86 1d08db8 c1693be 1d08db8 c1693be 1d08db8 c1693be 1d08db8 c1693be d36cf56 99bfa9a d36cf56 1d08db8 4b5f334 1d08db8 c1693be 1d08db8 7d9eec3 1d08db8 9cf2e86 c1693be 9cf2e86 c1693be 184dab0 c1693be ccf78ae 99bfa9a ccf78ae 9cf2e86 4b5f334 e3a7cef 9cf2e86 c1693be a85ea1b e3a7cef 7d9eec3 9cf2e86 8c8001e 545761a 8c8001e 545761a 8c8001e 545761a 8c8001e 545761a 8c8001e 9cf2e86 35245db 8a8890b 3fde2e0 31fd6fe 8c8001e 31fd6fe 3fde2e0 18639e5 9cf2e86 a85ea1b f79aae9 18639e5 409297c d7f2438 0f16dda f79aae9 7d9eec3 a85ea1b 7d9eec3 a85ea1b 7d9eec3 a85ea1b 7d9eec3 a85ea1b 7d9eec3 a85ea1b 711929b 7d9eec3 9cf2e86 3fde2e0 9cf2e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import os
import argparse
import gradio as gr
import yaml
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
UVR_MODELS_DIR)
from modules.utils.files_manager import load_yaml
from modules.whisper.whisper_factory import WhisperFactory
from modules.whisper.faster_whisper_inference import FasterWhisperInference
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
from modules.translation.nllb_inference import NLLBInference
from modules.ui.htmls import *
from modules.utils.cli_manager import str2bool
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.whisper_parameter import *
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS, theme=self.args.theme)
self.whisper_inf = WhisperFactory.create_whisper_inference(
whisper_type=self.args.whisper_type,
whisper_model_dir=self.args.whisper_model_dir,
faster_whisper_model_dir=self.args.faster_whisper_model_dir,
insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
uvr_model_dir=self.args.uvr_model_dir,
output_dir=self.args.output_dir,
)
self.nllb_inf = NLLBInference(
model_dir=self.args.nllb_model_dir,
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.deepl_api = DeepLAPI(
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
print(f"Use \"{self.args.whisper_type}\" implementation")
print(f"Device \"{self.whisper_inf.device}\" is detected")
def create_whisper_parameters(self):
whisper_params = self.default_params["whisper"]
vad_params = self.default_params["vad"]
diarization_params = self.default_params["diarization"]
uvr_params = self.default_params["bgm_separation"]
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value=whisper_params["lang"], label="Language")
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label="Translate to English?",
interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"], label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0, interactive=True,
info="Beam size to use for decoding.")
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=whisper_params["log_prob_threshold"], interactive=True,
info="If the average log probability over sampled tokens is below this value, treat as failed.")
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"], interactive=True,
info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
value=self.whisper_inf.current_compute_type, interactive=True,
info="Select the type of computation to perform.")
nb_best_of = gr.Number(label="Best Of", value=whisper_params["best_of"], interactive=True,
info="Number of candidates when sampling with non-zero temperature.")
nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
info="Beam search patience factor.")
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=whisper_params["condition_on_previous_text"],
interactive=True,
info="Condition on previous text during decoding.")
sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature", value=whisper_params["prompt_reset_on_temperature"],
minimum=0, maximum=1, step=0.01, interactive=True,
info="Resets prompt if temperature is above this value."
" Arg has effect only if 'Condition On Previous Text' is True.")
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True,
info="Initial prompt to use for decoding.")
sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
step=0.01, maximum=1.0, interactive=True,
info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=whisper_params["compression_ratio_threshold"],
interactive=True,
info="If the gzip compression ratio is above this value, treat as failed.")
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
info="Exponential length penalty constant.")
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=whisper_params["repetition_penalty"],
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=whisper_params["no_repeat_ngram_size"],
precision=0,
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
info="Optional text to provide as a prefix for the first window.")
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=whisper_params["suppress_blank"],
info="Suppress blank outputs at the beginning of the sampling.")
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=whisper_params["max_initial_timestamp"],
info="The initial timestamp cannot be later than this.")
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value=whisper_params["prepend_punctuations"],
info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
tb_append_punctuations = gr.Textbox(label="Append Punctuations", value=whisper_params["append_punctuations"],
info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
precision=0,
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
nb_chunk_length = gr.Number(label="Chunk Length", value=lambda: whisper_params["chunk_length"],
precision=0,
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
value=lambda: whisper_params["hallucination_silence_threshold"],
info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold", value=lambda: whisper_params["language_detection_threshold"],
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=lambda: whisper_params["language_detection_segments"],
precision=0,
info="Number of segments to consider for the language detection.")
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=whisper_params["chunk_length_s"],
precision=0)
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
with gr.Accordion("BGM Separation", open=False):
cb_bgm_separation = gr.Checkbox(label="Enable BGM Separation Filter", value=uvr_params["is_separate_bgm"],
interactive=True)
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
choices=self.whisper_inf.music_separator.available_devices)
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
choices=self.whisper_inf.music_separator.available_models)
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output", value=uvr_params["save_file"])
with gr.Accordion("VAD", open=False):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=vad_params["threshold"],
info="Lower it to be more sensitive to small sounds.")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=vad_params["min_speech_duration_ms"],
info="Final speech chunks shorter than this time are thrown out")
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=vad_params["max_speech_duration_s"],
info="Maximum duration of speech chunks in \"seconds\". Chunks longer"
" than this time will be split at the timestamp of the last silence that"
" lasts more than 100ms (if any), to prevent aggressive cutting.")
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=vad_params["min_silence_duration_ms"],
info="In the end of each speech chunk wait for this time"
" before separating it")
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
info="Final speech chunks are padded by this time each side")
with gr.Accordion("Diarization", open=False):
cb_diarize = gr.Checkbox(label="Enable Diarization", value=diarization_params["is_diarize"])
tb_hf_token = gr.Text(label="HuggingFace Token", value=diarization_params["hf_token"],
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
dd_diarization_device = gr.Dropdown(label="Device",
choices=self.whisper_inf.diarizer.get_available_device(),
value=self.whisper_inf.diarizer.get_device())
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
return (
WhisperParameters(
model_size=dd_model, lang=dd_lang, is_translate=cb_translate, beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold, no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type, best_of=nb_best_of, patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text, initial_prompt=tb_initial_prompt,
temperature=sd_temperature, compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter, threshold=sd_threshold, min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s, min_silence_duration_ms=nb_min_silence_duration_ms,
speech_pad_ms=nb_speech_pad_ms, chunk_length_s=nb_chunk_length_s, batch_size=nb_batch_size,
is_diarize=cb_diarize, hf_token=tb_hf_token, diarization_device=dd_diarization_device,
length_penalty=nb_length_penalty, repetition_penalty=nb_repetition_penalty,
no_repeat_ngram_size=nb_no_repeat_ngram_size, prefix=tb_prefix, suppress_blank=cb_suppress_blank,
suppress_tokens=tb_suppress_tokens, max_initial_timestamp=nb_max_initial_timestamp,
word_timestamps=cb_word_timestamps, prepend_punctuations=tb_prepend_punctuations,
append_punctuations=tb_append_punctuations, max_new_tokens=nb_max_new_tokens, chunk_length=nb_chunk_length,
hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
language_detection_threshold=nb_language_detection_threshold,
language_detection_segments=nb_language_detection_segments,
prompt_reset_on_temperature=sld_prompt_reset_on_temperature, is_bgm_separate=cb_bgm_separation,
uvr_device=dd_uvr_device, uvr_model_size=dd_uvr_model_size, uvr_segment_size=nb_uvr_segment_size,
uvr_save_file=cb_uvr_save_file
),
dd_file_format,
cb_timestamp
)
def launch(self):
translation_params = self.default_params["translation"]
deepl_params = translation_params["deepl"]
nllb_params = translation_params["nllb"]
uvr_params = self.default_params["bgm_separation"]
with self.app:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Column():
input_file = gr.Files(type="filepath", label="Upload File here")
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
" Leave this field empty if you do not wish to use a local path.",
visible=self.args.colab,
value="")
whisper_params, dd_file_format, cb_timestamp = self.create_whisper_parameters()
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3, interactive=False)
btn_openfolder = gr.Button('π', scale=1)
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
whisper_params, dd_file_format, cb_timestamp = self.create_whisper_parameters()
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [tb_youtubelink, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
whisper_params, dd_file_format, cb_timestamp = self.create_whisper_parameters()
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [mic_input, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("DeepL API"): # sub tab1
with gr.Row():
tb_api_key = gr.Textbox(label="Your Auth Key (API KEY)", value=deepl_params["api_key"])
with gr.Row():
dd_source_lang = gr.Dropdown(label="Source Language", value=deepl_params["source_lang"],
choices=list(
self.deepl_api.available_source_langs.keys()))
dd_target_lang = gr.Dropdown(label="Target Language", value=deepl_params["target_lang"],
choices=list(self.deepl_api.available_target_langs.keys()))
with gr.Row():
cb_is_pro = gr.Checkbox(label="Pro User?", value=deepl_params["is_pro"])
with gr.Row():
cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"], label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
btn_run.click(fn=self.deepl_api.translate_deepl,
inputs=[tb_api_key, file_subs, dd_source_lang, dd_target_lang,
cb_is_pro, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
inputs=None,
outputs=None)
with gr.TabItem("NLLB"): # sub tab2
with gr.Row():
dd_model_size = gr.Dropdown(label="Model", value=nllb_params["model_size"],
choices=self.nllb_inf.available_models)
dd_source_lang = gr.Dropdown(label="Source Language", value=nllb_params["source_lang"],
choices=self.nllb_inf.available_source_langs)
dd_target_lang = gr.Dropdown(label="Target Language", value=nllb_params["target_lang"],
choices=self.nllb_inf.available_target_langs)
with gr.Row():
nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
precision=0)
with gr.Row():
cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"], label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_openfolder = gr.Button('π', scale=1)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_model_size, dd_source_lang, dd_target_lang,
nb_max_length, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
inputs=None,
outputs=None)
with gr.TabItem("BGM Separation"):
files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
choices=self.whisper_inf.music_separator.available_devices)
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
choices=self.whisper_inf.music_separator.available_models)
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output",
value=True, visible=False)
btn_run = gr.Button("SEPARATE BACKGROUND MUSIC", variant="primary")
with gr.Column():
with gr.Row():
ad_instrumental = gr.Audio(label="Instrumental", scale=8)
btn_open_instrumental_folder = gr.Button('π', scale=1)
with gr.Row():
ad_vocals = gr.Audio(label="Vocals", scale=8)
btn_open_vocals_folder = gr.Button('π', scale=1)
btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
cb_uvr_save_file],
outputs=[ad_instrumental, ad_vocals])
btn_open_instrumental_folder.click(inputs=None,
outputs=None,
fn=lambda: self.open_folder(os.path.join(
self.args.output_dir, "UVR", "instrumental"
)))
btn_open_vocals_folder.click(inputs=None,
outputs=None,
fn=lambda: self.open_folder(os.path.join(
self.args.output_dir, "UVR", "vocals"
)))
# Launch the app with optional gradio settings
args = self.args
self.app.queue(
api_open=args.api_open
).launch(
share=args.share,
server_name=args.server_name,
server_port=args.server_port,
auth=(args.username, args.password) if args.username and args.password else None,
root_path=args.root_path,
inbrowser=args.inbrowser
)
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
os.makedirs(folder_path, exist_ok=True)
print(f"The directory path {folder_path} has newly created.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True, help='Enable api or not in Gradio')
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True, help='Whether to automatically start Gradio app or not')
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
default=INSANELY_FAST_WHISPER_MODELS_DIR,
help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MODELS_DIR,
help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
help='Directory path of the Facebook NLLB model')
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
help='Directory path of the UVR model')
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|