File size: 32,952 Bytes
9cf2e86
 
a85ea1b
19c3dbd
9cf2e86
7d9eec3
711929b
 
c1693be
2db409c
ada247c
 
 
c4e96e8
f79aae9
ada247c
 
 
a526073
63ab978
9cf2e86
 
 
0f16dda
2db409c
 
2e08651
 
 
8126fce
2db409c
 
2d93272
 
184dab0
2d93272
 
f513345
2d93272
c1693be
711929b
 
19c3dbd
c14cab5
19c3dbd
 
 
3ec9a9b
19c3dbd
c14cab5
19c3dbd
c14cab5
 
19c3dbd
c14cab5
 
19c3dbd
 
c14cab5
99bfa9a
c14cab5
 
19c3dbd
364597e
19c3dbd
364597e
19c3dbd
20f9596
c14cab5
364597e
 
19c3dbd
364597e
19c3dbd
364597e
19c3dbd
364597e
 
19c3dbd
20f9596
 
 
364597e
 
19c3dbd
 
20f9596
19c3dbd
 
364597e
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
 
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
 
c14cab5
19c3dbd
 
c14cab5
 
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
c14cab5
19c3dbd
 
c14cab5
 
19c3dbd
 
 
c14cab5
f636e83
a8c9eff
f636e83
 
 
 
 
 
13fb3c5
f636e83
815f5df
19c3dbd
 
 
c14cab5
19c3dbd
471a073
19c3dbd
471a073
 
 
19c3dbd
471a073
 
19c3dbd
471a073
c14cab5
 
19c3dbd
 
c14cab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20f9596
fbcbf8a
 
09fb62c
c14cab5
 
 
 
 
9cf2e86
c1693be
 
 
545761a
c1693be
9cf2e86
3fde2e0
 
9cf2e86
 
 
767d188
e3a7cef
767d188
a85ea1b
767d188
 
 
5a66e88
c14cab5
 
9cf2e86
 
 
4b5f334
 
e3a7cef
9cf2e86
767d188
9cf2e86
6148cfe
e3a7cef
9cf2e86
 
 
 
 
 
 
 
 
 
 
5a66e88
c14cab5
 
9cf2e86
 
 
4b5f334
 
e3a7cef
9cf2e86
a526073
661e83c
9cf2e86
6148cfe
e3a7cef
9cf2e86
 
 
 
 
 
 
5a66e88
c14cab5
5a66e88
9cf2e86
 
 
4b5f334
 
e3a7cef
9cf2e86
aad17fa
661e83c
9cf2e86
6148cfe
e3a7cef
9cf2e86
 
 
 
e3a7cef
9cf2e86
 
1d08db8
 
c1693be
1d08db8
c1693be
 
1d08db8
c1693be
 
1d08db8
c1693be
d36cf56
99bfa9a
d36cf56
1d08db8
 
 
4b5f334
 
1d08db8
 
 
c1693be
 
1d08db8
 
7d9eec3
1d08db8
 
 
 
9cf2e86
c1693be
9cf2e86
c1693be
 
 
 
184dab0
c1693be
 
ccf78ae
99bfa9a
ccf78ae
9cf2e86
 
 
4b5f334
 
e3a7cef
9cf2e86
 
 
 
c1693be
a85ea1b
e3a7cef
 
7d9eec3
9cf2e86
 
8c8001e
545761a
 
 
 
 
 
 
 
8c8001e
545761a
8c8001e
 
 
 
 
 
 
545761a
8c8001e
 
 
545761a
8c8001e
 
 
 
 
 
 
 
 
 
9cf2e86
35245db
8a8890b
 
 
 
 
 
 
 
 
 
 
 
3fde2e0
31fd6fe
 
 
 
 
8c8001e
 
31fd6fe
 
 
 
 
 
 
 
 
3fde2e0
18639e5
9cf2e86
a85ea1b
 
f79aae9
18639e5
 
409297c
d7f2438
 
0f16dda
f79aae9
 
 
7d9eec3
a85ea1b
7d9eec3
a85ea1b
 
7d9eec3
a85ea1b
7d9eec3
a85ea1b
7d9eec3
a85ea1b
711929b
 
7d9eec3
9cf2e86
3fde2e0
9cf2e86
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import os
import argparse
import gradio as gr
import yaml

from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
                                 INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
                                 UVR_MODELS_DIR)
from modules.utils.files_manager import load_yaml
from modules.whisper.whisper_factory import WhisperFactory
from modules.whisper.faster_whisper_inference import FasterWhisperInference
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
from modules.translation.nllb_inference import NLLBInference
from modules.ui.htmls import *
from modules.utils.cli_manager import str2bool
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.whisper_parameter import *


class App:
    def __init__(self, args):
        self.args = args
        self.app = gr.Blocks(css=CSS, theme=self.args.theme)
        self.whisper_inf = WhisperFactory.create_whisper_inference(
            whisper_type=self.args.whisper_type,
            whisper_model_dir=self.args.whisper_model_dir,
            faster_whisper_model_dir=self.args.faster_whisper_model_dir,
            insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
            uvr_model_dir=self.args.uvr_model_dir,
            output_dir=self.args.output_dir,
        )
        self.nllb_inf = NLLBInference(
            model_dir=self.args.nllb_model_dir,
            output_dir=os.path.join(self.args.output_dir, "translations")
        )
        self.deepl_api = DeepLAPI(
            output_dir=os.path.join(self.args.output_dir, "translations")
        )
        self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
        print(f"Use \"{self.args.whisper_type}\" implementation")
        print(f"Device \"{self.whisper_inf.device}\" is detected")

    def create_whisper_parameters(self):
        whisper_params = self.default_params["whisper"]
        vad_params = self.default_params["vad"]
        diarization_params = self.default_params["diarization"]
        uvr_params = self.default_params["bgm_separation"]

        with gr.Row():
            dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
                                   label="Model")
            dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
                                  value=whisper_params["lang"], label="Language")
            dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
        with gr.Row():
            cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label="Translate to English?",
                                       interactive=True)
        with gr.Row():
            cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"], label="Add a timestamp to the end of the filename",
                                       interactive=True)
        with gr.Accordion("Advanced Parameters", open=False):
            nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0, interactive=True,
                                     info="Beam size to use for decoding.")
            nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=whisper_params["log_prob_threshold"], interactive=True,
                                              info="If the average log probability over sampled tokens is below this value, treat as failed.")
            nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"], interactive=True,
                                               info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
            dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
                                          value=self.whisper_inf.current_compute_type, interactive=True,
                                          info="Select the type of computation to perform.")
            nb_best_of = gr.Number(label="Best Of", value=whisper_params["best_of"], interactive=True,
                                   info="Number of candidates when sampling with non-zero temperature.")
            nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
                                    info="Beam search patience factor.")
            cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=whisper_params["condition_on_previous_text"],
                                                        interactive=True,
                                                        info="Condition on previous text during decoding.")
            sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature", value=whisper_params["prompt_reset_on_temperature"],
                                                        minimum=0, maximum=1, step=0.01, interactive=True,
                                                        info="Resets prompt if temperature is above this value."
                                                             " Arg has effect only if 'Condition On Previous Text' is True.")
            tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True,
                                           info="Initial prompt to use for decoding.")
            sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
                                       step=0.01, maximum=1.0, interactive=True,
                                       info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
            nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=whisper_params["compression_ratio_threshold"],
                                                       interactive=True,
                                                       info="If the gzip compression ratio is above this value, treat as failed.")
            with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
                nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
                                              info="Exponential length penalty constant.")
                nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=whisper_params["repetition_penalty"],
                                                  info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
                nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=whisper_params["no_repeat_ngram_size"],
                                                    precision=0,
                                                    info="Prevent repetitions of n-grams with this size (set 0 to disable).")
                tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
                                       info="Optional text to provide as a prefix for the first window.")
                cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=whisper_params["suppress_blank"],
                                                info="Suppress blank outputs at the beginning of the sampling.")
                tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
                                                info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
                nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=whisper_params["max_initial_timestamp"],
                                                     info="The initial timestamp cannot be later than this.")
                cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
                                                 info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
                tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value=whisper_params["prepend_punctuations"],
                                                     info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
                tb_append_punctuations = gr.Textbox(label="Append Punctuations", value=whisper_params["append_punctuations"],
                                                    info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
                nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
                                              precision=0,
                                              info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
                nb_chunk_length = gr.Number(label="Chunk Length", value=lambda: whisper_params["chunk_length"],
                                            precision=0,
                                            info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
                nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
                                                               value=lambda: whisper_params["hallucination_silence_threshold"],
                                                               info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
                tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
                                         info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
                nb_language_detection_threshold = gr.Number(label="Language Detection Threshold", value=lambda: whisper_params["language_detection_threshold"],
                                                            info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
                nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=lambda: whisper_params["language_detection_segments"],
                                                           precision=0,
                                                           info="Number of segments to consider for the language detection.")
            with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
                nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=whisper_params["chunk_length_s"],
                                              precision=0)
                nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)

        with gr.Accordion("BGM Separation", open=False):
            cb_bgm_separation = gr.Checkbox(label="Enable BGM Separation Filter", value=uvr_params["is_separate_bgm"],
                                            interactive=True)
            dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
                                        choices=self.whisper_inf.music_separator.available_devices)
            dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
                                            choices=self.whisper_inf.music_separator.available_models)
            nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
            cb_uvr_save_file = gr.Checkbox(label="Save separated files to output", value=uvr_params["save_file"])

        with gr.Accordion("VAD", open=False):
            cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
                                        interactive=True)
            sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=vad_params["threshold"],
                                     info="Lower it to be more sensitive to small sounds.")
            nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=vad_params["min_speech_duration_ms"],
                                                  info="Final speech chunks shorter than this time are thrown out")
            nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=vad_params["max_speech_duration_s"],
                                                 info="Maximum duration of speech chunks in \"seconds\". Chunks longer"
                                                        " than this time will be split at the timestamp of the last silence that"
                                                        " lasts more than 100ms (if any), to prevent aggressive cutting.")
            nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=vad_params["min_silence_duration_ms"],
                                                   info="In the end of each speech chunk wait for this time"
                                                        " before separating it")
            nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
                                         info="Final speech chunks are padded by this time each side")

        with gr.Accordion("Diarization", open=False):
            cb_diarize = gr.Checkbox(label="Enable Diarization", value=diarization_params["is_diarize"])
            tb_hf_token = gr.Text(label="HuggingFace Token", value=diarization_params["hf_token"],
                                  info="This is only needed the first time you download the model. If you already have models, you don't need to enter. To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
            dd_diarization_device = gr.Dropdown(label="Device",
                                                choices=self.whisper_inf.diarizer.get_available_device(),
                                                value=self.whisper_inf.diarizer.get_device())

        dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

        return (
            WhisperParameters(
                model_size=dd_model, lang=dd_lang, is_translate=cb_translate, beam_size=nb_beam_size,
                log_prob_threshold=nb_log_prob_threshold, no_speech_threshold=nb_no_speech_threshold,
                compute_type=dd_compute_type, best_of=nb_best_of, patience=nb_patience,
                condition_on_previous_text=cb_condition_on_previous_text, initial_prompt=tb_initial_prompt,
                temperature=sd_temperature, compression_ratio_threshold=nb_compression_ratio_threshold,
                vad_filter=cb_vad_filter, threshold=sd_threshold, min_speech_duration_ms=nb_min_speech_duration_ms,
                max_speech_duration_s=nb_max_speech_duration_s, min_silence_duration_ms=nb_min_silence_duration_ms,
                speech_pad_ms=nb_speech_pad_ms, chunk_length_s=nb_chunk_length_s, batch_size=nb_batch_size,
                is_diarize=cb_diarize, hf_token=tb_hf_token, diarization_device=dd_diarization_device,
                length_penalty=nb_length_penalty, repetition_penalty=nb_repetition_penalty,
                no_repeat_ngram_size=nb_no_repeat_ngram_size, prefix=tb_prefix, suppress_blank=cb_suppress_blank,
                suppress_tokens=tb_suppress_tokens, max_initial_timestamp=nb_max_initial_timestamp,
                word_timestamps=cb_word_timestamps, prepend_punctuations=tb_prepend_punctuations,
                append_punctuations=tb_append_punctuations, max_new_tokens=nb_max_new_tokens, chunk_length=nb_chunk_length,
                hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
                language_detection_threshold=nb_language_detection_threshold,
                language_detection_segments=nb_language_detection_segments,
                prompt_reset_on_temperature=sld_prompt_reset_on_temperature, is_bgm_separate=cb_bgm_separation,
                uvr_device=dd_uvr_device, uvr_model_size=dd_uvr_model_size, uvr_segment_size=nb_uvr_segment_size,
                uvr_save_file=cb_uvr_save_file
            ),
            dd_file_format,
            cb_timestamp
        )

    def launch(self):
        translation_params = self.default_params["translation"]
        deepl_params = translation_params["deepl"]
        nllb_params = translation_params["nllb"]
        uvr_params = self.default_params["bgm_separation"]

        with self.app:
            with gr.Row():
                with gr.Column():
                    gr.Markdown(MARKDOWN, elem_id="md_project")
            with gr.Tabs():
                with gr.TabItem("File"):  # tab1
                    with gr.Column():
                        input_file = gr.Files(type="filepath", label="Upload File here")
                        tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
                                                     info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
                                                          " Leave this field empty if you do not wish to use a local path.",
                                                     visible=self.args.colab,
                                                     value="")

                    whisper_params, dd_file_format, cb_timestamp = self.create_whisper_parameters()

                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=5)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=3, interactive=False)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
                    btn_run.click(fn=self.whisper_inf.transcribe_file,
                                  inputs=params + whisper_params.as_list(),
                                  outputs=[tb_indicator, files_subtitles])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)

                with gr.TabItem("Youtube"):  # tab2
                    with gr.Row():
                        tb_youtubelink = gr.Textbox(label="Youtube Link")
                    with gr.Row(equal_height=True):
                        with gr.Column():
                            img_thumbnail = gr.Image(label="Youtube Thumbnail")
                        with gr.Column():
                            tb_title = gr.Label(label="Youtube Title")
                            tb_description = gr.Textbox(label="Youtube Description", max_lines=15)

                    whisper_params, dd_file_format, cb_timestamp = self.create_whisper_parameters()

                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=5)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [tb_youtubelink, dd_file_format, cb_timestamp]

                    btn_run.click(fn=self.whisper_inf.transcribe_youtube,
                                  inputs=params + whisper_params.as_list(),
                                  outputs=[tb_indicator, files_subtitles])
                    tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
                                          outputs=[img_thumbnail, tb_title, tb_description])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)

                with gr.TabItem("Mic"):  # tab3
                    with gr.Row():
                        mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)

                    whisper_params, dd_file_format, cb_timestamp = self.create_whisper_parameters()

                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=5)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [mic_input, dd_file_format, cb_timestamp]

                    btn_run.click(fn=self.whisper_inf.transcribe_mic,
                                  inputs=params + whisper_params.as_list(),
                                  outputs=[tb_indicator, files_subtitles])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)

                with gr.TabItem("T2T Translation"):  # tab 4
                    with gr.Row():
                        file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
                                             file_types=['.vtt', '.srt'])

                    with gr.TabItem("DeepL API"):  # sub tab1
                        with gr.Row():
                            tb_api_key = gr.Textbox(label="Your Auth Key (API KEY)", value=deepl_params["api_key"])
                        with gr.Row():
                            dd_source_lang = gr.Dropdown(label="Source Language", value=deepl_params["source_lang"],
                                                          choices=list(
                                                                  self.deepl_api.available_source_langs.keys()))
                            dd_target_lang = gr.Dropdown(label="Target Language", value=deepl_params["target_lang"],
                                                         choices=list(self.deepl_api.available_target_langs.keys()))
                        with gr.Row():
                            cb_is_pro = gr.Checkbox(label="Pro User?", value=deepl_params["is_pro"])
                        with gr.Row():
                            cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"], label="Add a timestamp to the end of the filename",
                                                       interactive=True)
                        with gr.Row():
                            btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label="Output", scale=5)
                            files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    btn_run.click(fn=self.deepl_api.translate_deepl,
                                  inputs=[tb_api_key, file_subs, dd_source_lang, dd_target_lang,
                                          cb_is_pro, cb_timestamp],
                                  outputs=[tb_indicator, files_subtitles])

                    btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
                                         inputs=None,
                                         outputs=None)

                    with gr.TabItem("NLLB"):  # sub tab2
                        with gr.Row():
                            dd_model_size = gr.Dropdown(label="Model", value=nllb_params["model_size"],
                                                        choices=self.nllb_inf.available_models)
                            dd_source_lang = gr.Dropdown(label="Source Language", value=nllb_params["source_lang"],
                                                         choices=self.nllb_inf.available_source_langs)
                            dd_target_lang = gr.Dropdown(label="Target Language", value=nllb_params["target_lang"],
                                                         choices=self.nllb_inf.available_target_langs)
                        with gr.Row():
                            nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
                                                      precision=0)
                        with gr.Row():
                            cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"], label="Add a timestamp to the end of the filename",
                                                       interactive=True)
                        with gr.Row():
                            btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label="Output", scale=5)
                            files_subtitles = gr.Files(label="Downloadable output file", scale=3)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)
                        with gr.Column():
                            md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")

                    btn_run.click(fn=self.nllb_inf.translate_file,
                                  inputs=[file_subs, dd_model_size, dd_source_lang, dd_target_lang,
                                          nb_max_length, cb_timestamp],
                                  outputs=[tb_indicator, files_subtitles])

                    btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
                                         inputs=None,
                                         outputs=None)

                with gr.TabItem("BGM Separation"):
                    files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
                    dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
                                                choices=self.whisper_inf.music_separator.available_devices)
                    dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
                                                    choices=self.whisper_inf.music_separator.available_models)
                    nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
                    cb_uvr_save_file = gr.Checkbox(label="Save separated files to output",
                                                   value=True, visible=False)
                    btn_run = gr.Button("SEPARATE BACKGROUND MUSIC", variant="primary")
                    with gr.Column():
                        with gr.Row():
                            ad_instrumental = gr.Audio(label="Instrumental", scale=8)
                            btn_open_instrumental_folder = gr.Button('πŸ“‚', scale=1)
                        with gr.Row():
                            ad_vocals = gr.Audio(label="Vocals", scale=8)
                            btn_open_vocals_folder = gr.Button('πŸ“‚', scale=1)

                    btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
                                  inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
                                          cb_uvr_save_file],
                                  outputs=[ad_instrumental, ad_vocals])
                    btn_open_instrumental_folder.click(inputs=None,
                                                       outputs=None,
                                                       fn=lambda: self.open_folder(os.path.join(
                                                           self.args.output_dir, "UVR", "instrumental"
                                                       )))
                    btn_open_vocals_folder.click(inputs=None,
                                                 outputs=None,
                                                 fn=lambda: self.open_folder(os.path.join(
                                                    self.args.output_dir, "UVR", "vocals"
                                                 )))

        # Launch the app with optional gradio settings
        args = self.args

        self.app.queue(
            api_open=args.api_open
        ).launch(
            share=args.share,
            server_name=args.server_name,
            server_port=args.server_port,
            auth=(args.username, args.password) if args.username and args.password else None,
            root_path=args.root_path,
            inbrowser=args.inbrowser
        )

    @staticmethod
    def open_folder(folder_path: str):
        if os.path.exists(folder_path):
            os.system(f"start {folder_path}")
        else:
            os.makedirs(folder_path, exist_ok=True)
            print(f"The directory path {folder_path} has newly created.")

    @staticmethod
    def on_change_models(model_size: str):
        translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
        if model_size not in translatable_model:
            return gr.Checkbox(visible=False, value=False, interactive=False)
        else:
            return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)


# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
                    help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True, help='Enable api or not in Gradio')
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True, help='Whether to automatically start Gradio app or not')
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
                    help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
                    help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
                    default=INSANELY_FAST_WHISPER_MODELS_DIR,
                    help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MODELS_DIR,
                    help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
                    help='Directory path of the Facebook NLLB model')
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
                    help='Directory path of the UVR model')
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
_args = parser.parse_args()

if __name__ == "__main__":
    app = App(args=_args)
    app.launch()