File size: 16,030 Bytes
63ab978
9cf2e86
 
 
f7d7f08
eeb8996
3fde2e0
 
63ab978
1d08db8
63ab978
9cf2e86
 
 
0f16dda
eef1e47
eeb8996
 
 
 
1f79d6e
9cf2e86
1d08db8
736206b
9cf2e86
 
 
 
 
 
63ab978
9cf2e86
 
9cbb786
9cf2e86
5a1d3d2
9cf2e86
5a1d3d2
63ab978
9cf2e86
 
3fde2e0
 
9cf2e86
 
 
 
e3a7cef
9cf2e86
9cbb786
9cf2e86
 
 
b2f7849
9cf2e86
2ddb400
ccf78ae
2ddb400
e29f6b4
 
 
 
00efe30
9cf2e86
 
 
e3a7cef
 
 
9cf2e86
b2f7849
00efe30
9cf2e86
e29f6b4
e3a7cef
9cf2e86
 
 
 
 
 
 
 
 
 
 
 
 
9cbb786
9cf2e86
 
 
b2f7849
9cf2e86
 
ccf78ae
 
 
e29f6b4
 
 
 
00efe30
9cf2e86
 
 
e3a7cef
 
 
9cf2e86
b2f7849
00efe30
9cf2e86
e29f6b4
e3a7cef
9cf2e86
 
 
 
 
 
 
 
 
9cbb786
9cf2e86
 
 
b2f7849
9cf2e86
 
e29f6b4
 
 
 
00efe30
9cf2e86
 
 
e3a7cef
 
 
9cf2e86
b2f7849
00efe30
9cf2e86
e29f6b4
e3a7cef
9cf2e86
 
 
 
 
e3a7cef
9cf2e86
 
1d08db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf2e86
 
 
 
 
 
 
ccf78ae
 
 
9cf2e86
 
 
e3a7cef
 
 
9cf2e86
 
 
 
ccf78ae
e3a7cef
 
9cf2e86
 
 
 
35245db
 
9cf2e86
35245db
 
 
 
 
 
 
 
3fde2e0
 
18639e5
9cf2e86
eeb8996
d7f2438
18639e5
 
d7f2438
 
0f16dda
29aee3c
9cf2e86
3fde2e0
9cf2e86
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import gradio as gr
import os
import argparse

from modules.whisper_Inference import WhisperInference
from modules.faster_whisper_inference import FasterWhisperInference
from modules.nllb_inference import NLLBInference
from ui.htmls import *
from modules.youtube_manager import get_ytmetas
from modules.deepl_api import DeepLAPI

class App:
    def __init__(self, args):
        self.args = args
        self.app = gr.Blocks(css=CSS, theme=self.args.theme)
        self.whisper_inf = WhisperInference() if self.args.disable_faster_whisper else FasterWhisperInference()
        if isinstance(self.whisper_inf, FasterWhisperInference):
            print("Use Faster Whisper implementation")
        else:
            print("Use Open AI Whisper implementation")
        print(f"Device \"{self.whisper_inf.device}\" is detected")
        self.nllb_inf = NLLBInference()
        self.deepl_api = DeepLAPI()

    @staticmethod
    def open_folder(folder_path: str):
        if os.path.exists(folder_path):
            os.system(f"start {folder_path}")
        else:
            print(f"The folder {folder_path} does not exist.")

    @staticmethod
    def on_change_models(model_size: str):
        translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
        if model_size not in translatable_model:
            return gr.Checkbox(visible=False, value=False, interactive=False)
        else:
            return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)

    def launch(self):
        with self.app:
            with gr.Row():
                with gr.Column():
                    gr.Markdown(MARKDOWN, elem_id="md_project")
            with gr.Tabs():
                with gr.TabItem("File"):  # tab1
                    with gr.Row():
                        input_file = gr.Files(type="filepath", label="Upload File here")
                    with gr.Row():
                        dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v3",
                                               label="Model")
                        dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
                                              value="Automatic Detection", label="Language")
                        dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
                    with gr.Row():
                        cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
                    with gr.Row():
                        cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
                    with gr.Accordion("Advanced_Parameters", open=False):
                        nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
                        nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
                        nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
                        dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=4)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=4, interactive=False)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [input_file, dd_model, dd_lang, dd_file_format, cb_translate, cb_timestamp]
                    advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
                    btn_run.click(fn=self.whisper_inf.transcribe_file,
                                  inputs=params + advanced_params,
                                  outputs=[tb_indicator, files_subtitles])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
                    dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

                with gr.TabItem("Youtube"):  # tab2
                    with gr.Row():
                        tb_youtubelink = gr.Textbox(label="Youtube Link")
                    with gr.Row(equal_height=True):
                        with gr.Column():
                            img_thumbnail = gr.Image(label="Youtube Thumbnail")
                        with gr.Column():
                            tb_title = gr.Label(label="Youtube Title")
                            tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
                    with gr.Row():
                        dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v3",
                                               label="Model")
                        dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
                                              value="Automatic Detection", label="Language")
                        dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
                    with gr.Row():
                        cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
                    with gr.Row():
                        cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
                                                   interactive=True)
                    with gr.Accordion("Advanced_Parameters", open=False):
                        nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
                        nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
                        nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
                        dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=4)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=4)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [tb_youtubelink, dd_model, dd_lang, dd_file_format, cb_translate, cb_timestamp]
                    advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
                    btn_run.click(fn=self.whisper_inf.transcribe_youtube,
                                  inputs=params + advanced_params,
                                  outputs=[tb_indicator, files_subtitles])
                    tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
                                          outputs=[img_thumbnail, tb_title, tb_description])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
                    dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

                with gr.TabItem("Mic"):  # tab3
                    with gr.Row():
                        mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
                    with gr.Row():
                        dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v3",
                                               label="Model")
                        dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
                                              value="Automatic Detection", label="Language")
                        dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
                    with gr.Row():
                        cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
                    with gr.Accordion("Advanced_Parameters", open=False):
                        nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
                        nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
                        nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
                        dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
                    with gr.Row():
                        btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
                    with gr.Row():
                        tb_indicator = gr.Textbox(label="Output", scale=4)
                        files_subtitles = gr.Files(label="Downloadable output file", scale=4)
                        btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    params = [mic_input, dd_model, dd_lang, dd_file_format, cb_translate]
                    advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
                    btn_run.click(fn=self.whisper_inf.transcribe_mic,
                                  inputs=params + advanced_params,
                                  outputs=[tb_indicator, files_subtitles])
                    btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
                    dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

                with gr.TabItem("T2T Translation"):  # tab 4
                    with gr.Row():
                        file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
                                             file_types=['.vtt', '.srt'])

                    with gr.TabItem("DeepL API"):  # sub tab1
                        with gr.Row():
                            tb_authkey = gr.Textbox(label="Your Auth Key (API KEY)",
                                                    value="")
                        with gr.Row():
                            dd_deepl_sourcelang = gr.Dropdown(label="Source Language", value="Automatic Detection",
                                                              choices=list(
                                                                  self.deepl_api.available_source_langs.keys()))
                            dd_deepl_targetlang = gr.Dropdown(label="Target Language", value="English",
                                                              choices=list(
                                                                  self.deepl_api.available_target_langs.keys()))
                        with gr.Row():
                            cb_deepl_ispro = gr.Checkbox(label="Pro User?", value=False)
                        with gr.Row():
                            btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label="Output", scale=4)
                            files_subtitles = gr.Files(label="Downloadable output file", scale=4)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)

                    btn_run.click(fn=self.deepl_api.translate_deepl,
                                  inputs=[tb_authkey, file_subs, dd_deepl_sourcelang, dd_deepl_targetlang,
                                          cb_deepl_ispro],
                                  outputs=[tb_indicator, files_subtitles])

                    btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
                                         inputs=None,
                                         outputs=None)

                    with gr.TabItem("NLLB"):  # sub tab2
                        with gr.Row():
                            dd_nllb_model = gr.Dropdown(label="Model", value=self.nllb_inf.default_model_size,
                                                        choices=self.nllb_inf.available_models)
                            dd_nllb_sourcelang = gr.Dropdown(label="Source Language",
                                                             choices=self.nllb_inf.available_source_langs)
                            dd_nllb_targetlang = gr.Dropdown(label="Target Language",
                                                             choices=self.nllb_inf.available_target_langs)
                        with gr.Row():
                            cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
                                                       interactive=True)
                        with gr.Row():
                            btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label="Output", scale=4)
                            files_subtitles = gr.Files(label="Downloadable output file", scale=4)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)
                        with gr.Column():
                            md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")

                    btn_run.click(fn=self.nllb_inf.translate_file,
                                  inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang, cb_timestamp],
                                  outputs=[tb_indicator, files_subtitles])

                    btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
                                         inputs=None,
                                         outputs=None)

        # Launch the app with optional gradio settings
        launch_args = {}
        if self.args.share:
            launch_args['share'] = self.args.share
        if self.args.server_name:
            launch_args['server_name'] = self.args.server_name
        if self.args.server_port:
            launch_args['server_port'] = self.args.server_port
        if self.args.username and self.args.password:
            launch_args['auth'] = (self.args.username, self.args.password)
        self.app.queue(api_open=False).launch(**launch_args)


# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--disable_faster_whisper', type=bool, default=False, nargs='?', const=True, help='Disable the faster_whisper implementation. faster_whipser is implemented by https://github.com/guillaumekln/faster-whisper')
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
_args = parser.parse_args()

if __name__ == "__main__":
    app = App(args=_args)
    app.launch()