Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .gitignore +1 -0
- README.md +3 -9
- app.py +284 -0
- masking_methods.py +25 -0
- paraphraser.py +29 -0
- requirements.text +17 -0
- sampling_methods.py +132 -0
- scores.py +51 -0
- tree.py +115 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title: AIISC
|
3 |
-
emoji: 💻
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: pink
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.37.2
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: AIISC-Watermarking-Model
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 4.36.0
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
from transformers import AutoModelForSeq2SeqLM
|
3 |
+
import plotly.graph_objs as go
|
4 |
+
import textwrap
|
5 |
+
from transformers import pipeline
|
6 |
+
import re
|
7 |
+
import time
|
8 |
+
import requests
|
9 |
+
from PIL import Image
|
10 |
+
import itertools
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import matplotlib
|
14 |
+
from matplotlib.colors import ListedColormap, rgb2hex
|
15 |
+
import ipywidgets as widgets
|
16 |
+
from IPython.display import display, HTML
|
17 |
+
import pandas as pd
|
18 |
+
from pprint import pprint
|
19 |
+
from tenacity import retry
|
20 |
+
from tqdm import tqdm
|
21 |
+
import scipy.stats
|
22 |
+
import torch
|
23 |
+
from transformers import GPT2LMHeadModel
|
24 |
+
import seaborn as sns
|
25 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForMaskedLM
|
26 |
+
import random
|
27 |
+
from nltk.corpus import stopwords
|
28 |
+
from termcolor import colored
|
29 |
+
import nltk
|
30 |
+
from nltk.translate.bleu_score import sentence_bleu
|
31 |
+
from transformers import BertTokenizer, BertModel
|
32 |
+
import graphviz
|
33 |
+
import gradio as gr
|
34 |
+
from tree import generate_plot
|
35 |
+
from paraphraser import generate_paraphrase
|
36 |
+
|
37 |
+
nltk.download('stopwords')
|
38 |
+
|
39 |
+
|
40 |
+
# Function to Find the Longest Common Substring Words Subsequence
|
41 |
+
def longest_common_subss(original_sentence, paraphrased_sentences):
|
42 |
+
stop_words = set(stopwords.words('english'))
|
43 |
+
original_sentence_lower = original_sentence.lower()
|
44 |
+
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
45 |
+
paraphrased_sentences_no_stopwords = []
|
46 |
+
|
47 |
+
for sentence in paraphrased_sentences_lower:
|
48 |
+
words = re.findall(r'\b\w+\b', sentence)
|
49 |
+
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
50 |
+
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
51 |
+
|
52 |
+
results = []
|
53 |
+
for sentence in paraphrased_sentences_no_stopwords:
|
54 |
+
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
55 |
+
for word in common_words:
|
56 |
+
sentence = sentence.replace(word, colored(word, 'green'))
|
57 |
+
results.append({
|
58 |
+
"Original Sentence": original_sentence_lower,
|
59 |
+
"Paraphrased Sentence": sentence,
|
60 |
+
"Substrings Word Pair": common_words
|
61 |
+
})
|
62 |
+
return results
|
63 |
+
|
64 |
+
# Function to Find Common Substring Word between each paraphrase sentences
|
65 |
+
def common_substring_word(original_sentence, paraphrased_sentences):
|
66 |
+
stop_words = set(stopwords.words('english'))
|
67 |
+
original_sentence_lower = original_sentence.lower()
|
68 |
+
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
69 |
+
paraphrased_sentences_no_stopwords = []
|
70 |
+
|
71 |
+
for sentence in paraphrased_sentences_lower:
|
72 |
+
words = re.findall(r'\b\w+\b', sentence)
|
73 |
+
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
74 |
+
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
75 |
+
|
76 |
+
results = []
|
77 |
+
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
|
78 |
+
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
79 |
+
common_substrings = ', '.join(sorted(common_words))
|
80 |
+
for word in common_words:
|
81 |
+
sentence = sentence.replace(word, colored(word, 'green'))
|
82 |
+
results.append({
|
83 |
+
f"Paraphrased Sentence {idx+1}": sentence,
|
84 |
+
"Common Substrings": common_substrings
|
85 |
+
})
|
86 |
+
return results
|
87 |
+
|
88 |
+
|
89 |
+
import re
|
90 |
+
from nltk.corpus import stopwords
|
91 |
+
|
92 |
+
def find_common_subsequences(sentence, str_list):
|
93 |
+
stop_words = set(stopwords.words('english'))
|
94 |
+
sentence = sentence.lower()
|
95 |
+
|
96 |
+
str_list = [s.lower() for s in str_list]
|
97 |
+
|
98 |
+
def is_present(lcs, str_list):
|
99 |
+
for string in str_list:
|
100 |
+
if lcs not in string:
|
101 |
+
return False
|
102 |
+
return True
|
103 |
+
|
104 |
+
def remove_stop_words_and_special_chars(sentence):
|
105 |
+
sentence = re.sub(r'[^\w\s]', '', sentence)
|
106 |
+
words = sentence.split()
|
107 |
+
filtered_words = [word for word in words if word.lower() not in stop_words]
|
108 |
+
return " ".join(filtered_words)
|
109 |
+
|
110 |
+
sentence = remove_stop_words_and_special_chars(sentence)
|
111 |
+
str_list = [remove_stop_words_and_special_chars(s) for s in str_list]
|
112 |
+
|
113 |
+
words = sentence.split(" ")
|
114 |
+
common_grams = []
|
115 |
+
added_phrases = set()
|
116 |
+
|
117 |
+
def is_covered(subseq, added_phrases):
|
118 |
+
for phrase in added_phrases:
|
119 |
+
if subseq in phrase:
|
120 |
+
return True
|
121 |
+
return False
|
122 |
+
|
123 |
+
for i in range(len(words) - 4):
|
124 |
+
penta = " ".join(words[i:i+5])
|
125 |
+
if is_present(penta, str_list):
|
126 |
+
common_grams.append(penta)
|
127 |
+
added_phrases.add(penta)
|
128 |
+
|
129 |
+
for i in range(len(words) - 3):
|
130 |
+
quad = " ".join(words[i:i+4])
|
131 |
+
if is_present(quad, str_list) and not is_covered(quad, added_phrases):
|
132 |
+
common_grams.append(quad)
|
133 |
+
added_phrases.add(quad)
|
134 |
+
|
135 |
+
for i in range(len(words) - 2):
|
136 |
+
tri = " ".join(words[i:i+3])
|
137 |
+
if is_present(tri, str_list) and not is_covered(tri, added_phrases):
|
138 |
+
common_grams.append(tri)
|
139 |
+
added_phrases.add(tri)
|
140 |
+
|
141 |
+
for i in range(len(words) - 1):
|
142 |
+
bi = " ".join(words[i:i+2])
|
143 |
+
if is_present(bi, str_list) and not is_covered(bi, added_phrases):
|
144 |
+
common_grams.append(bi)
|
145 |
+
added_phrases.add(bi)
|
146 |
+
|
147 |
+
for i in range(len(words)):
|
148 |
+
uni = words[i]
|
149 |
+
if is_present(uni, str_list) and not is_covered(uni, added_phrases):
|
150 |
+
common_grams.append(uni)
|
151 |
+
added_phrases.add(uni)
|
152 |
+
|
153 |
+
return common_grams
|
154 |
+
|
155 |
+
def llm_output(prompt):
|
156 |
+
return prompt, prompt
|
157 |
+
|
158 |
+
def highlight_phrases_with_colors(sentences, phrases):
|
159 |
+
color_map = {}
|
160 |
+
color_index = 0
|
161 |
+
highlighted_html = []
|
162 |
+
idx = 1
|
163 |
+
for sentence in sentences:
|
164 |
+
sentence_with_idx = f"{idx}. {sentence}"
|
165 |
+
idx += 1
|
166 |
+
highlighted_sentence = sentence_with_idx
|
167 |
+
phrase_count = 0
|
168 |
+
words = re.findall(r'\b\w+\b', sentence)
|
169 |
+
word_index = 1
|
170 |
+
for phrase in phrases:
|
171 |
+
if phrase not in color_map:
|
172 |
+
color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)'
|
173 |
+
color_index += 1
|
174 |
+
escaped_phrase = re.escape(phrase)
|
175 |
+
pattern = rf'\b{escaped_phrase}\b'
|
176 |
+
highlighted_sentence, num_replacements = re.subn(
|
177 |
+
pattern,
|
178 |
+
lambda m, count=phrase_count, color=color_map[phrase], index=word_index: (
|
179 |
+
f'<span style="background-color: {color}; font-weight: bold;'
|
180 |
+
f' padding: 2px 4px; border-radius: 2px; position: relative;">'
|
181 |
+
f'<span style="background-color: black; color: white; border-radius: 50%;'
|
182 |
+
f' padding: 2px 5px; margin-right: 5px;">{index}</span>'
|
183 |
+
f'{m.group(0)}'
|
184 |
+
f'</span>'
|
185 |
+
),
|
186 |
+
highlighted_sentence,
|
187 |
+
flags=re.IGNORECASE
|
188 |
+
)
|
189 |
+
if num_replacements > 0:
|
190 |
+
phrase_count += 1
|
191 |
+
word_index += 1
|
192 |
+
highlighted_html.append(highlighted_sentence)
|
193 |
+
final_html = "<br><br>".join(highlighted_html)
|
194 |
+
return f'''
|
195 |
+
<div style="border: solid 1px #; padding: 16px; background-color: #FFFFFF; color: #374151; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 2px;">
|
196 |
+
<h3 style="margin-top: 0; font-size: 1em; color: #111827;">Paraphrased And Highlighted Text</h3>
|
197 |
+
<div style="background-color: #F5F5F5; line-height: 1.6; padding: 15px; border-radius: 2px;">{final_html}</div>
|
198 |
+
</div>
|
199 |
+
'''
|
200 |
+
|
201 |
+
import re
|
202 |
+
|
203 |
+
def highlight_phrases_with_colors_single_sentence(sentence, phrases):
|
204 |
+
color_map = {}
|
205 |
+
color_index = 0
|
206 |
+
highlighted_sentence = sentence
|
207 |
+
phrase_count = 0
|
208 |
+
words = re.findall(r'\b\w+\b', sentence)
|
209 |
+
word_index = 1
|
210 |
+
|
211 |
+
for phrase in phrases:
|
212 |
+
if phrase not in color_map:
|
213 |
+
color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)'
|
214 |
+
color_index += 1
|
215 |
+
escaped_phrase = re.escape(phrase)
|
216 |
+
pattern = rf'\b{escaped_phrase}\b'
|
217 |
+
highlighted_sentence, num_replacements = re.subn(
|
218 |
+
pattern,
|
219 |
+
lambda m, count=phrase_count, color=color_map[phrase], index=word_index: (
|
220 |
+
f'<span style="background-color: {color}; font-weight: bold;'
|
221 |
+
f' padding: 2px 4px; border-radius: 2px; position: relative;">'
|
222 |
+
f'<span style="background-color: black; color: white; border-radius: 50%;'
|
223 |
+
f' padding: 2px 5px; margin-right: 5px;">{index}</span>'
|
224 |
+
f'{m.group(0)}'
|
225 |
+
f'</span>'
|
226 |
+
),
|
227 |
+
highlighted_sentence,
|
228 |
+
flags=re.IGNORECASE
|
229 |
+
)
|
230 |
+
if num_replacements > 0:
|
231 |
+
phrase_count += 1
|
232 |
+
word_index += 1
|
233 |
+
|
234 |
+
final_html = highlighted_sentence
|
235 |
+
return f'''
|
236 |
+
<div style="border: solid 1px #; padding: 16px; background-color: #FFFFFF; color: #374151; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 2px;">
|
237 |
+
<h3 style="margin-top: 0; font-size: 1em; color: #111827;">Selected Sentence</h3>
|
238 |
+
<div style="background-color: #F5F5F5; line-height: 1.6; padding: 15px; border-radius: 2px;">{final_html}</div>
|
239 |
+
</div>
|
240 |
+
'''
|
241 |
+
|
242 |
+
|
243 |
+
# Function for the Gradio interface
|
244 |
+
def model(prompt):
|
245 |
+
generated, sentence = llm_output(prompt)
|
246 |
+
res = generate_paraphrase(sentence)
|
247 |
+
common_subs = longest_common_subss(sentence, res)
|
248 |
+
common_grams = find_common_subsequences(sentence, res)
|
249 |
+
for i in range(len(common_subs)):
|
250 |
+
common_subs[i]["Paraphrased Sentence"] = res[i]
|
251 |
+
generated_highlighted = highlight_phrases_with_colors_single_sentence(generated, common_grams)
|
252 |
+
result = highlight_phrases_with_colors(res, common_grams)
|
253 |
+
tree = generate_plot(sentence)
|
254 |
+
return generated, generated_highlighted, result, tree
|
255 |
+
|
256 |
+
with gr.Blocks(theme = gr.themes.Monochrome()) as demo:
|
257 |
+
gr.Markdown("# Paraphrases the Text and Highlights the Non-melting Points")
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
user_input = gr.Textbox(label="User Prompt")
|
261 |
+
|
262 |
+
with gr.Row():
|
263 |
+
submit_button = gr.Button("Submit")
|
264 |
+
clear_button = gr.Button("Clear")
|
265 |
+
|
266 |
+
with gr.Row():
|
267 |
+
ai_output = gr.Textbox(label="AI-generated Text (Llama3)")
|
268 |
+
|
269 |
+
with gr.Row():
|
270 |
+
selected_sentence = gr.HTML()
|
271 |
+
|
272 |
+
with gr.Row():
|
273 |
+
html_output = gr.HTML()
|
274 |
+
|
275 |
+
with gr.Row():
|
276 |
+
tree = gr.Plot()
|
277 |
+
|
278 |
+
submit_button.click(model, inputs=user_input, outputs=[ai_output, selected_sentence, html_output, tree])
|
279 |
+
clear_button.click(lambda: "", inputs=None, outputs=user_input)
|
280 |
+
clear_button.click(lambda: "", inputs=None, outputs=[ai_output, selected_sentence, html_output, tree])
|
281 |
+
|
282 |
+
# Launch the demo
|
283 |
+
demo.launch(share=True)
|
284 |
+
|
masking_methods.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
2 |
+
from transformers import pipeline
|
3 |
+
import random
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
|
6 |
+
# Masking Model
|
7 |
+
def mask_non_stopword(sentence):
|
8 |
+
stop_words = set(stopwords.words('english'))
|
9 |
+
words = sentence.split()
|
10 |
+
non_stop_words = [word for word in words if word.lower() not in stop_words]
|
11 |
+
if not non_stop_words:
|
12 |
+
return sentence
|
13 |
+
word_to_mask = random.choice(non_stop_words)
|
14 |
+
masked_sentence = sentence.replace(word_to_mask, '[MASK]', 1)
|
15 |
+
return masked_sentence
|
16 |
+
|
17 |
+
# Load tokenizer and model for masked language model
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
|
19 |
+
model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
|
20 |
+
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
21 |
+
|
22 |
+
def mask(sentence):
|
23 |
+
predictions = fill_mask(sentence)
|
24 |
+
masked_sentences = [predictions[i]['sequence'] for i in range(len(predictions))]
|
25 |
+
return masked_sentences
|
paraphraser.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
|
3 |
+
# Function to Initialize the Model
|
4 |
+
def init_model():
|
5 |
+
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
6 |
+
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
|
7 |
+
return para_tokenizer, para_model
|
8 |
+
|
9 |
+
# Function to Paraphrase the Text
|
10 |
+
def paraphrase(question, para_tokenizer, para_model, num_beams=5, num_beam_groups=5, num_return_sequences=5, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=64):
|
11 |
+
input_ids = para_tokenizer(
|
12 |
+
f'paraphrase: {question}',
|
13 |
+
return_tensors="pt", padding="longest",
|
14 |
+
max_length=max_length,
|
15 |
+
truncation=True,
|
16 |
+
).input_ids
|
17 |
+
outputs = para_model.generate(
|
18 |
+
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
|
19 |
+
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
|
20 |
+
num_beams=num_beams, num_beam_groups=num_beam_groups,
|
21 |
+
max_length=max_length, diversity_penalty=diversity_penalty
|
22 |
+
)
|
23 |
+
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
24 |
+
return res
|
25 |
+
|
26 |
+
def generate_paraphrase(question):
|
27 |
+
para_tokenizer, para_model = init_model()
|
28 |
+
res = paraphrase(question, para_tokenizer, para_model)
|
29 |
+
return res
|
requirements.text
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ipywidgets
|
2 |
+
transformers
|
3 |
+
plotly
|
4 |
+
requests
|
5 |
+
Pillow
|
6 |
+
numpy
|
7 |
+
matplotlib
|
8 |
+
tqdm
|
9 |
+
scipy
|
10 |
+
torch
|
11 |
+
seaborn
|
12 |
+
termcolor
|
13 |
+
nltk
|
14 |
+
tenacity
|
15 |
+
pandas
|
16 |
+
graphviz==0.20.3
|
17 |
+
gradio
|
sampling_methods.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from nltk.corpus import stopwords
|
3 |
+
import random
|
4 |
+
from termcolor import colored
|
5 |
+
|
6 |
+
# Function to Watermark a Word Take Randomly Between Each lcs Point (Random Sampling)
|
7 |
+
def random_sampling(original_sentence, paraphrased_sentences):
|
8 |
+
stop_words = set(stopwords.words('english'))
|
9 |
+
original_sentence_lower = original_sentence.lower()
|
10 |
+
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
11 |
+
paraphrased_sentences_no_stopwords = []
|
12 |
+
|
13 |
+
for sentence in paraphrased_sentences_lower:
|
14 |
+
words = re.findall(r'\b\w+\b', sentence)
|
15 |
+
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
16 |
+
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
17 |
+
|
18 |
+
results = []
|
19 |
+
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
|
20 |
+
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
21 |
+
common_substrings = ', '.join(sorted(common_words))
|
22 |
+
|
23 |
+
words_to_replace = [word for word in sentence.split() if word not in common_words]
|
24 |
+
if words_to_replace:
|
25 |
+
word_to_mark = random.choice(words_to_replace)
|
26 |
+
sentence = sentence.replace(word_to_mark, colored(word_to_mark, 'red'))
|
27 |
+
|
28 |
+
for word in common_words:
|
29 |
+
sentence = sentence.replace(word, colored(word, 'green'))
|
30 |
+
|
31 |
+
results.append({
|
32 |
+
f"Paraphrased Sentence {idx+1}": sentence,
|
33 |
+
"Common Substrings": common_substrings
|
34 |
+
})
|
35 |
+
return results
|
36 |
+
|
37 |
+
# Function for Inverse Transform Sampling
|
38 |
+
def inverse_transform_sampling(original_sentence, paraphrased_sentences):
|
39 |
+
stop_words = set(stopwords.words('english'))
|
40 |
+
original_sentence_lower = original_sentence.lower()
|
41 |
+
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
42 |
+
paraphrased_sentences_no_stopwords = []
|
43 |
+
|
44 |
+
for sentence in paraphrased_sentences_lower:
|
45 |
+
words = re.findall(r'\b\w+\b', sentence)
|
46 |
+
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
47 |
+
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
48 |
+
|
49 |
+
results = []
|
50 |
+
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
|
51 |
+
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
52 |
+
common_substrings = ', '.join(sorted(common_words))
|
53 |
+
|
54 |
+
words_to_replace = [word for word in sentence.split() if word not in common_words]
|
55 |
+
if words_to_replace:
|
56 |
+
probabilities = [1 / len(words_to_replace)] * len(words_to_replace)
|
57 |
+
chosen_word = random.choices(words_to_replace, weights=probabilities)[0]
|
58 |
+
sentence = sentence.replace(chosen_word, colored(chosen_word, 'magenta'))
|
59 |
+
|
60 |
+
for word in common_words:
|
61 |
+
sentence = sentence.replace(word, colored(word, 'green'))
|
62 |
+
|
63 |
+
results.append({
|
64 |
+
f"Paraphrased Sentence {idx+1}": sentence,
|
65 |
+
"Common Substrings": common_substrings
|
66 |
+
})
|
67 |
+
return results
|
68 |
+
|
69 |
+
# Function for Contextual Sampling
|
70 |
+
def contextual_sampling(original_sentence, paraphrased_sentences):
|
71 |
+
stop_words = set(stopwords.words('english'))
|
72 |
+
original_sentence_lower = original_sentence.lower()
|
73 |
+
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
74 |
+
paraphrased_sentences_no_stopwords = []
|
75 |
+
|
76 |
+
for sentence in paraphrased_sentences_lower:
|
77 |
+
words = re.findall(r'\b\w+\b', sentence)
|
78 |
+
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
79 |
+
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
80 |
+
|
81 |
+
results = []
|
82 |
+
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
|
83 |
+
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
84 |
+
common_substrings = ', '.join(sorted(common_words))
|
85 |
+
|
86 |
+
words_to_replace = [word for word in sentence.split() if word not in common_words]
|
87 |
+
if words_to_replace:
|
88 |
+
context = " ".join([word for word in sentence.split() if word not in common_words])
|
89 |
+
chosen_word = random.choice(words_to_replace)
|
90 |
+
sentence = sentence.replace(chosen_word, colored(chosen_word, 'red'))
|
91 |
+
|
92 |
+
for word in common_words:
|
93 |
+
sentence = sentence.replace(word, colored(word, 'green'))
|
94 |
+
|
95 |
+
results.append({
|
96 |
+
f"Paraphrased Sentence {idx+1}": sentence,
|
97 |
+
"Common Substrings": common_substrings
|
98 |
+
})
|
99 |
+
return results
|
100 |
+
|
101 |
+
# Function for Exponential Minimum Sampling
|
102 |
+
def exponential_minimum_sampling(original_sentence, paraphrased_sentences):
|
103 |
+
stop_words = set(stopwords.words('english'))
|
104 |
+
original_sentence_lower = original_sentence.lower()
|
105 |
+
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
|
106 |
+
paraphrased_sentences_no_stopwords = []
|
107 |
+
|
108 |
+
for sentence in paraphrased_sentences_lower:
|
109 |
+
words = re.findall(r'\b\w+\b', sentence)
|
110 |
+
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
|
111 |
+
paraphrased_sentences_no_stopwords.append(filtered_sentence)
|
112 |
+
|
113 |
+
results = []
|
114 |
+
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
|
115 |
+
common_words = set(original_sentence_lower.split()) & set(sentence.split())
|
116 |
+
common_substrings = ', '.join(sorted(common_words))
|
117 |
+
|
118 |
+
words_to_replace = [word for word in sentence.split() if word not in common_words]
|
119 |
+
if words_to_replace:
|
120 |
+
num_words = len(words_to_replace)
|
121 |
+
probabilities = [2 ** (-i) for i in range(num_words)]
|
122 |
+
chosen_word = random.choices(words_to_replace, weights=probabilities)[0]
|
123 |
+
sentence = sentence.replace(chosen_word, colored(chosen_word, 'red'))
|
124 |
+
|
125 |
+
for word in common_words:
|
126 |
+
sentence = sentence.replace(word, colored(word, 'green'))
|
127 |
+
|
128 |
+
results.append({
|
129 |
+
f"Paraphrased Sentence {idx+1}": sentence,
|
130 |
+
"Common Substrings": common_substrings
|
131 |
+
})
|
132 |
+
return results
|
scores.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from nltk.translate.bleu_score import sentence_bleu
|
4 |
+
from transformers import BertTokenizer, BertModel
|
5 |
+
|
6 |
+
# Function to Calculate the BLEU score
|
7 |
+
def calculate_bleu(reference, candidate):
|
8 |
+
return sentence_bleu([reference], candidate)
|
9 |
+
|
10 |
+
# Function to calculate BERT score
|
11 |
+
def calculate_bert(reference, candidate):
|
12 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
13 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
14 |
+
|
15 |
+
reference_tokens = tokenizer.tokenize(reference)
|
16 |
+
candidate_tokens = tokenizer.tokenize(candidate)
|
17 |
+
|
18 |
+
reference_ids = tokenizer.encode(reference, add_special_tokens=True, max_length=512, truncation=True, return_tensors="pt")
|
19 |
+
candidate_ids = tokenizer.encode(candidate, add_special_tokens=True, max_length=512, truncation=True, return_tensors="pt")
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
reference_outputs = model(reference_ids)
|
23 |
+
candidate_outputs = model(candidate_ids)
|
24 |
+
|
25 |
+
reference_embeddings = reference_outputs[0][:, 0, :].numpy()
|
26 |
+
candidate_embeddings = candidate_outputs[0][:, 0, :].numpy()
|
27 |
+
|
28 |
+
cosine_similarity = np.dot(reference_embeddings, candidate_embeddings.T) / (np.linalg.norm(reference_embeddings) * np.linalg.norm(candidate_embeddings))
|
29 |
+
return np.mean(cosine_similarity)
|
30 |
+
|
31 |
+
# Function to calculate minimum edit distance
|
32 |
+
def min_edit_distance(reference, candidate):
|
33 |
+
m = len(reference)
|
34 |
+
n = len(candidate)
|
35 |
+
|
36 |
+
dp = [[0] * (n + 1) for _ in range(m + 1)]
|
37 |
+
|
38 |
+
for i in range(m + 1):
|
39 |
+
for j in range(n + 1):
|
40 |
+
if i == 0:
|
41 |
+
dp[i][j] = j
|
42 |
+
elif j == 0:
|
43 |
+
dp[i][j] = i
|
44 |
+
elif reference[i - 1] == candidate[j - 1]:
|
45 |
+
dp[i][j] = dp[i - 1][j - 1]
|
46 |
+
else:
|
47 |
+
dp[i][j] = 1 + min(dp[i][j - 1], # Insert
|
48 |
+
dp[i - 1][j], # Remove
|
49 |
+
dp[i - 1][j - 1]) # Replace
|
50 |
+
|
51 |
+
return dp[m][n]
|
tree.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import plotly.graph_objs as go
|
2 |
+
import textwrap
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from paraphraser import generate_paraphrase
|
6 |
+
from masking_methods import mask, mask_non_stopword
|
7 |
+
|
8 |
+
def generate_plot(original_sentence):
|
9 |
+
paraphrased_sentences = generate_paraphrase(original_sentence)
|
10 |
+
first_paraphrased_sentence = paraphrased_sentences[0]
|
11 |
+
masked_sentence = mask_non_stopword(first_paraphrased_sentence)
|
12 |
+
masked_versions = mask(masked_sentence)
|
13 |
+
|
14 |
+
nodes = []
|
15 |
+
nodes.append(original_sentence)
|
16 |
+
nodes.extend(paraphrased_sentences)
|
17 |
+
nodes.extend(masked_versions)
|
18 |
+
nodes[0] += ' L0'
|
19 |
+
para_len = len(paraphrased_sentences)
|
20 |
+
for i in range(1, para_len+1):
|
21 |
+
nodes[i] += ' L1'
|
22 |
+
for i in range(para_len+1, len(nodes)):
|
23 |
+
nodes[i] += ' L2'
|
24 |
+
|
25 |
+
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
26 |
+
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in cleaned_nodes]
|
27 |
+
|
28 |
+
def get_levels_and_edges(nodes):
|
29 |
+
levels = {}
|
30 |
+
edges = []
|
31 |
+
for i, node in enumerate(nodes):
|
32 |
+
level = int(node.split()[-1][1])
|
33 |
+
levels[i] = level
|
34 |
+
|
35 |
+
# Add edges from L0 to all L1 nodes
|
36 |
+
root_node = next(i for i, level in levels.items() if level == 0)
|
37 |
+
for i, level in levels.items():
|
38 |
+
if level == 1:
|
39 |
+
edges.append((root_node, i))
|
40 |
+
|
41 |
+
# Identify the first L1 node
|
42 |
+
first_l1_node = next(i for i, level in levels.items() if level == 1)
|
43 |
+
# Add edges from the first L1 node to all L2 nodes
|
44 |
+
for i, level in levels.items():
|
45 |
+
if level == 2:
|
46 |
+
edges.append((first_l1_node, i))
|
47 |
+
|
48 |
+
return levels, edges
|
49 |
+
|
50 |
+
# Get levels and dynamic edges
|
51 |
+
levels, edges = get_levels_and_edges(nodes)
|
52 |
+
max_level = max(levels.values())
|
53 |
+
|
54 |
+
# Calculate positions
|
55 |
+
positions = {}
|
56 |
+
level_widths = defaultdict(int)
|
57 |
+
for node, level in levels.items():
|
58 |
+
level_widths[level] += 1
|
59 |
+
|
60 |
+
x_offsets = {level: - (width - 1) / 2 for level, width in level_widths.items()}
|
61 |
+
y_gap = 4
|
62 |
+
|
63 |
+
for node, level in levels.items():
|
64 |
+
positions[node] = (x_offsets[level], -level * y_gap)
|
65 |
+
x_offsets[level] += 1
|
66 |
+
|
67 |
+
# Create figure
|
68 |
+
fig = go.Figure()
|
69 |
+
|
70 |
+
# Add nodes to the figure
|
71 |
+
for i, node in enumerate(wrapped_nodes):
|
72 |
+
x, y = positions[i]
|
73 |
+
fig.add_trace(go.Scatter(
|
74 |
+
x=[x],
|
75 |
+
y=[y],
|
76 |
+
mode='markers',
|
77 |
+
marker=dict(size=10, color='blue'),
|
78 |
+
hoverinfo='none'
|
79 |
+
))
|
80 |
+
fig.add_annotation(
|
81 |
+
x=x,
|
82 |
+
y=y,
|
83 |
+
text=node,
|
84 |
+
showarrow=False,
|
85 |
+
yshift=20, # Adjust the y-shift value to avoid overlap
|
86 |
+
align="center",
|
87 |
+
font=dict(size=10),
|
88 |
+
bordercolor='black',
|
89 |
+
borderwidth=1,
|
90 |
+
borderpad=4,
|
91 |
+
bgcolor='white',
|
92 |
+
width=200
|
93 |
+
)
|
94 |
+
|
95 |
+
# Add edges to the figure
|
96 |
+
for edge in edges:
|
97 |
+
x0, y0 = positions[edge[0]]
|
98 |
+
x1, y1 = positions[edge[1]]
|
99 |
+
fig.add_trace(go.Scatter(
|
100 |
+
x=[x0, x1],
|
101 |
+
y=[y0, y1],
|
102 |
+
mode='lines',
|
103 |
+
line=dict(color='black', width=2)
|
104 |
+
))
|
105 |
+
|
106 |
+
fig.update_layout(
|
107 |
+
showlegend=False,
|
108 |
+
margin=dict(t=50, b=50, l=50, r=50),
|
109 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
110 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
111 |
+
width=1470,
|
112 |
+
height=800 # Increase height to provide more space
|
113 |
+
)
|
114 |
+
|
115 |
+
return fig
|