Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
from urllib.parse import urlparse | |
import requests | |
import time | |
import os | |
from utils.gradio_helpers import parse_outputs, process_outputs | |
inputs = [] | |
inputs.append(gr.Image( | |
label="Image", type="filepath" | |
)) | |
inputs.append(gr.Textbox( | |
label="Prompt", info='''Prompt''' | |
)) | |
inputs.append(gr.Textbox( | |
label="Negative Prompt", info='''Negative Prompt''' | |
)) | |
inputs.append(gr.Number( | |
label="Scale Factor", info='''Scale factor''', value=2 | |
)) | |
inputs.append(gr.Slider( | |
label="Dynamic", info='''HDR, try from 3 - 9''', value=6, | |
minimum=1, maximum=50 | |
)) | |
inputs.append(gr.Number( | |
label="Creativity", info='''Creativity, try from 0.3 - 0.9''', value=0.35 | |
)) | |
inputs.append(gr.Number( | |
label="Resemblance", info='''Resemblance, try from 0.3 - 1.6''', value=0.6 | |
)) | |
inputs.append(gr.Dropdown( | |
choices=[16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256], label="tiling_width", info='''Fractality, set lower tile width for a high Fractality''', value="112" | |
)) | |
inputs.append(gr.Dropdown( | |
choices=[16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256], label="tiling_height", info='''Fractality, set lower tile height for a high Fractality''', value="144" | |
)) | |
inputs.append(gr.Dropdown( | |
choices=['epicrealism_naturalSinRC1VAE.safetensors [84d76a0328]', 'juggernaut_reborn.safetensors [338b85bc4f]', 'flat2DAnimerge_v45Sharp.safetensors'], label="sd_model", info='''Stable Diffusion model checkpoint''', value="juggernaut_reborn.safetensors [338b85bc4f]" | |
)) | |
inputs.append(gr.Dropdown( | |
choices=['DPM++ 2M Karras', 'DPM++ SDE Karras', 'DPM++ 2M SDE Exponential', 'DPM++ 2M SDE Karras', 'Euler a', 'Euler', 'LMS', 'Heun', 'DPM2', 'DPM2 a', 'DPM++ 2S a', 'DPM++ 2M', 'DPM++ SDE', 'DPM++ 2M SDE', 'DPM++ 2M SDE Heun', 'DPM++ 2M SDE Heun Karras', 'DPM++ 2M SDE Heun Exponential', 'DPM++ 3M SDE', 'DPM++ 3M SDE Karras', 'DPM++ 3M SDE Exponential', 'DPM fast', 'DPM adaptive', 'LMS Karras', 'DPM2 Karras', 'DPM2 a Karras', 'DPM++ 2S a Karras', 'Restart', 'DDIM', 'PLMS', 'UniPC'], label="scheduler", info='''scheduler''', value="DPM++ 3M SDE Karras" | |
)) | |
inputs.append(gr.Slider( | |
label="Num Inference Steps", info='''Number of denoising steps''', value=18, | |
minimum=1, maximum=100, step=1, | |
)) | |
inputs.append(gr.Number( | |
label="Seed", info='''Random seed. Leave blank to randomize the seed''', value=1337 | |
)) | |
inputs.append(gr.Checkbox( | |
label="Downscaling", info='''Downscale the image before upscaling. Can improve quality and speed for images with high resolution but lower quality''', value=False | |
)) | |
inputs.append(gr.Number( | |
label="Downscaling Resolution", info='''Downscaling resolution''', value=768 | |
)) | |
inputs.append(gr.Textbox( | |
label="Lora Links", info='''Link to a lora file you want to use in your upscaling. Multiple links possible, seperated by comma''' | |
)) | |
inputs.append(gr.Textbox( | |
label="Custom Sd Model", info='''Link to a custom safetensors checkpoint file you want to use in your upscaling. Will overwrite sd_model checkpoint.''' | |
)) | |
names = ['image', 'prompt', 'negative_prompt', 'scale_factor', 'dynamic', 'creativity', 'resemblance', 'tiling_width', 'tiling_height', 'sd_model', 'scheduler', 'num_inference_steps', 'seed', 'downscaling', 'downscaling_resolution', 'lora_links', 'custom_sd_model'] | |
outputs = [] | |
outputs.append(gr.Image()) | |
expected_outputs = len(outputs) | |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): | |
headers = {'Content-Type': 'application/json'} | |
payload = {"input": {}} | |
base_url = "http://0.0.0.0:7860" | |
for i, key in enumerate(names): | |
value = args[i] | |
if value and (os.path.exists(str(value))): | |
value = f"{base_url}/file=" + value | |
if value is not None and value != "": | |
payload["input"][key] = value | |
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) | |
if response.status_code == 201: | |
follow_up_url = response.json()["urls"]["get"] | |
response = requests.get(follow_up_url, headers=headers) | |
while response.json()["status"] != "succeeded": | |
if response.json()["status"] == "failed": | |
raise gr.Error("The submission failed!") | |
response = requests.get(follow_up_url, headers=headers) | |
time.sleep(1) | |
if response.status_code == 200: | |
json_response = response.json() | |
#If the output component is JSON return the entire output response | |
if(outputs[0].get_config()["name"] == "json"): | |
return json_response["output"] | |
predict_outputs = parse_outputs(json_response["output"]) | |
processed_outputs = process_outputs(predict_outputs) | |
difference_outputs = expected_outputs - len(processed_outputs) | |
# If less outputs than expected, hide the extra ones | |
if difference_outputs > 0: | |
extra_outputs = [gr.update(visible=False)] * difference_outputs | |
processed_outputs.extend(extra_outputs) | |
# If more outputs than expected, cap the outputs to the expected number | |
elif difference_outputs < 0: | |
processed_outputs = processed_outputs[:difference_outputs] | |
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] | |
else: | |
if(response.status_code == 409): | |
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") | |
raise gr.Error(f"The submission failed! Error: {response.status_code}") | |
title = "Demo for clarity-upscaler cog image by philz1337x" | |
model_description = "High resolution image Upscaler and Enhancer. Use at ClarityAI.cc. A free Magnific alternative. Twitter/X: @philz1337x" | |
app = gr.Interface( | |
fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=model_description, | |
allow_flagging="never", | |
) | |
app.launch(share=True) | |