|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification |
|
|
|
|
|
dataset = load_dataset('beans') |
|
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") |
|
model = AutoModelForImageClassification.from_pretrained("saved_model_files") |
|
|
|
labels = dataset['train'].features['labels'].names |
|
|
|
def classify(im): |
|
features = feature_extractor(im, return_tensors='pt') |
|
inp = model(**features) |
|
logits = torch.nn.functional.softmax(inp.logits, dim=-1) |
|
probability = torch.nn.functional.softmax(logits, dim=-1) |
|
probs = probability[0].detach().numpy() |
|
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} |
|
return confidences |
|
|
|
import gradio as gr |
|
|
|
interface = gr.Interface(fn=classify, inputs=gr.Image(shape=(224, 224)), outputs="text") |
|
|
|
interface.launch(debug=True) |
|
|