StoryDiffusion / utils /gradio_utils.py
jacktheporsche's picture
Added Files
04c50e9 verified
raw
history blame
18 kB
import torch
import random
import torch.nn as nn
import torch.nn.functional as F
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None):
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
# 生成一个0到1之间的随机数
global total_count,attn_count,cur_step,mask256,mask1024,mask4096
global sa16, sa32, sa64
global write
if write:
self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]
else:
encoder_hidden_states = torch.cat(self.id_bank[cur_step][0],hidden_states[:1],self.id_bank[cur_step][1],hidden_states[1:])
# 判断随机数是否大于0.5
if cur_step <5:
hidden_states = self.__call2__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
else: # 256 1024 4096
random_number = random.random()
if cur_step <20:
rand_num = 0.3
else:
rand_num = 0.1
if random_number > rand_num:
if not write:
if hidden_states.shape[1] == 32* 32:
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
elif hidden_states.shape[1] ==16*16:
attention_mask = mask256[mask256.shape[0] // self.total_length * self.id_length:]
else:
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
else:
if hidden_states.shape[1] == 32* 32:
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length]
elif hidden_states.shape[1] ==16*16:
attention_mask = mask256[:mask256.shape[0] // self.total_length * self.id_length]
else:
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length]
hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
else:
hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
attn_count +=1
if attn_count == total_count:
attn_count = 0
cur_step += 1
mask256,mask1024,mask4096 = cal_attn_mask(self.total_length,self.id_length,sa16,sa32,sa64, device=self.device, dtype= self.dtype)
return hidden_states
def __call1__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if encoder_hidden_states is not None:
raise Exception("not implement")
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
total_batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
total_batch_size,nums_token,channel = hidden_states.shape
img_nums = total_batch_size//2
hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)
batch_size, sequence_length, _ = hidden_states.shape
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
# if input_ndim == 4:
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
# if attn.residual_connection:
# tile_hidden_states = tile_hidden_states + residual
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def cal_attn_mask(total_length,id_length,sa16,sa32,sa64,device="cuda",dtype= torch.float16):
bool_matrix256 = torch.rand((1, total_length * 256),device = device,dtype = dtype) < sa16
bool_matrix1024 = torch.rand((1, total_length * 1024),device = device,dtype = dtype) < sa32
bool_matrix4096 = torch.rand((1, total_length * 4096),device = device,dtype = dtype) < sa64
bool_matrix256 = bool_matrix256.repeat(total_length,1)
bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
for i in range(total_length):
bool_matrix256[i:i+1,id_length*256:] = False
bool_matrix1024[i:i+1,id_length*1024:] = False
bool_matrix4096[i:i+1,id_length*4096:] = False
bool_matrix256[i:i+1,i*256:(i+1)*256] = True
bool_matrix1024[i:i+1,i*1024:(i+1)*1024] = True
bool_matrix4096[i:i+1,i*4096:(i+1)*4096] = True
mask256 = bool_matrix256.unsqueeze(1).repeat(1,256,1).reshape(-1,total_length * 256)
mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,1024,1).reshape(-1,total_length * 1024)
mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,4096,1).reshape(-1,total_length * 4096)
return mask256,mask1024,mask4096
def cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16):
nums_1024 = (height // 32) * (width // 32)
nums_4096 = (height // 16) * (width // 16)
bool_matrix1024 = torch.rand((1, total_length * nums_1024),device = device,dtype = dtype) < sa32
bool_matrix4096 = torch.rand((1, total_length * nums_4096),device = device,dtype = dtype) < sa64
bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
for i in range(total_length):
bool_matrix1024[i:i+1,id_length*nums_1024:] = False
bool_matrix4096[i:i+1,id_length*nums_4096:] = False
bool_matrix1024[i:i+1,i*nums_1024:(i+1)*nums_1024] = True
bool_matrix4096[i:i+1,i*nums_4096:(i+1)*nums_4096] = True
mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,nums_1024,1).reshape(-1,total_length * nums_1024)
mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,nums_4096,1).reshape(-1,total_length * nums_4096)
return mask1024,mask4096
def cal_attn_indice_xl_effcient_memory(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16):
nums_1024 = (height // 32) * (width // 32)
nums_4096 = (height // 16) * (width // 16)
bool_matrix1024 = torch.rand((total_length,nums_1024),device = device,dtype = dtype) < sa32
bool_matrix4096 = torch.rand((total_length,nums_4096),device = device,dtype = dtype) < sa64
# 用nonzero()函数获取所有为True的值的索引
indices1024 = [torch.nonzero(bool_matrix1024[i], as_tuple=True)[0] for i in range(total_length)]
indices4096 = [torch.nonzero(bool_matrix4096[i], as_tuple=True)[0] for i in range(total_length)]
return indices1024,indices4096
class AttnProcessor(nn.Module):
r"""
Default processor for performing attention-related computations.
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
):
super().__init__()
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def is_torch2_available():
return hasattr(F, "scaled_dot_product_attention")