Spaces:
Paused
Paused
File size: 15,004 Bytes
dfb3b68 79fc3e3 dfb3b68 b491e93 dfb3b68 5914b68 dfb3b68 16e584b dfb3b68 0f381d1 dfb3b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import datetime
import json
import os
import shutil
from typing import Optional
from typing import Tuple
from typing import Union
import gradio as gr
import requests
import torch
from fastchat.conversation import Conversation
from fastchat.conversation import SeparatorStyle
from fastchat.conversation import get_conv_template
from fastchat.conversation import register_conv_template
from fastchat.model.model_adapter import BaseAdapter
from fastchat.model.model_adapter import load_model
from fastchat.model.model_adapter import model_adapters
from fastchat.serve.cli import SimpleChatIO
from fastchat.serve.inference import generate_stream
from huggingface_hub import Repository
from huggingface_hub import snapshot_download
from peft import LoraConfig
from peft import PeftModel
from peft import get_peft_model
from peft import set_peft_model_state_dict
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import PreTrainedModel
from transformers import PreTrainedTokenizerBase
class FastTokenizerAvailableBaseAdapter(BaseAdapter):
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
try:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
except ValueError:
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
)
return model, tokenizer
model_adapters[-1] = FastTokenizerAvailableBaseAdapter()
def load_lora_model(
model_path: str,
lora_weight: str,
device: str,
num_gpus: int,
max_gpu_memory: Optional[str] = None,
load_8bit: bool = False,
cpu_offloading: bool = False,
debug: bool = False,
) -> Tuple[Union[PreTrainedModel, PeftModel], PreTrainedTokenizerBase]:
model: Union[PreTrainedModel, PeftModel]
tokenizer: PreTrainedTokenizerBase
model, tokenizer = load_model(
model_path=model_path,
device=device,
num_gpus=num_gpus,
max_gpu_memory=max_gpu_memory,
load_8bit=load_8bit,
cpu_offloading=cpu_offloading,
debug=debug,
)
if lora_weight is not None:
# model = PeftModelForCausalLM.from_pretrained(model, model_path, **kwargs)
config = LoraConfig.from_pretrained(lora_weight)
model = get_peft_model(model, config)
# Check the available weights and load them
checkpoint_name = os.path.join(
lora_weight, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
lora_weight, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
# The two files above have a different name depending on how they were saved,
# but are actually the same.
if os.path.exists(checkpoint_name):
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
raise IOError(f"Checkpoint {checkpoint_name} not found")
if debug:
print(model)
model.eval()
return model, tokenizer
print(datetime.datetime.now())
NUM_THREADS = 1
print(NUM_THREADS)
print("starting server ...")
BASE_MODEL = "cyberagent/open-calm-7b"
LORA_WEIGHTS_HF = "izumi-lab/stormy-7b-10ep"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DATASET_REPOSITORY = os.environ.get("DATASET_REPOSITORY", None)
SLACK_WEBHOOK = os.environ.get("SLACK_WEBHOOK", None)
LORA_WEIGHTS = snapshot_download(LORA_WEIGHTS_HF)
repo = None
LOCAL_DIR = "/home/user/data/"
if HF_TOKEN and DATASET_REPOSITORY:
try:
shutil.rmtree(LOCAL_DIR)
except Exception:
pass
repo = Repository(
local_dir=LOCAL_DIR,
clone_from=DATASET_REPOSITORY,
use_auth_token=HF_TOKEN,
repo_type="dataset",
)
repo.git_pull()
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
model, tokenizer = load_lora_model(
model_path=BASE_MODEL,
lora_weight=LORA_WEIGHTS,
device=device,
num_gpus=1,
max_gpu_memory="16GiB",
load_8bit=False,
cpu_offloading=False,
debug=False,
)
register_conv_template(
Conversation(
name="japanese",
system="ไปฅไธใฏใฟในใฏใ่ชฌๆใใๆ็คบใงใใ่ฆๆฑใ้ฉๅใซๆบใใใใใช่ฟ็ญใๆธใใฆใใ ใใใ\n\n",
roles=("ๆ็คบ", "่ฟ็ญ"),
messages=(),
offset=0,
sep_style=SeparatorStyle.ADD_COLON_SINGLE,
sep="\n###",
stop_str="###",
)
)
Conversation._get_prompt = Conversation.get_prompt
Conversation._append_message = Conversation.append_message
def conversation_append_message(cls, role: str, message: str):
cls.offset = -2
return cls._append_message(role, message)
def conversation_get_prompt_overrider(cls: Conversation) -> str:
cls.messages = cls.messages[-2:]
return cls._get_prompt()
def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs):
current_hour = now.strftime("%Y-%m-%d_%H")
file_name = f"prompts_{LORA_WEIGHTS_HF.split('/')[-1]}_{current_hour}.jsonl"
if repo is not None:
repo.git_pull(rebase=True)
with open(os.path.join(LOCAL_DIR, file_name), "a", encoding="utf-8") as f:
json.dump(
{
"inputs": inputs,
"outputs": outputs,
"generate_kwargs": generate_kwargs,
},
f,
ensure_ascii=False,
)
f.write("\n")
repo.push_to_hub()
# we cant add typing now
# https://github.com/gradio-app/gradio/issues/3514
def evaluate(
instruction,
temperature=0.7,
max_tokens=256,
repetition_penalty=1.0,
):
try:
conv_template = "japanese"
inputs = tokenizer(instruction, return_tensors="pt")
if len(inputs["input_ids"][0]) > max_tokens - 40:
if HF_TOKEN and DATASET_REPOSITORY:
try:
now = datetime.datetime.now()
current_time = now.strftime("%Y-%m-%d %H:%M:%S")
print(f"[{current_time}] Pushing prompt and completion to the Hub")
save_inputs_and_outputs(
now,
instruction,
"",
{
"temperature": temperature,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
)
except Exception as e:
print(e)
return (
f"please reduce the input length. Currently, {len(inputs['input_ids'][0])} ( > {max_tokens - 40}) tokens are used.",
gr.update(interactive=True),
gr.update(interactive=True),
)
conv = get_conv_template(conv_template)
conv.append_message(conv.roles[0], instruction)
conv.append_message(conv.roles[1], None)
generate_stream_func = generate_stream
prompt = conv.get_prompt()
gen_params = {
"model": BASE_MODEL,
"prompt": prompt,
"temperature": temperature,
"max_new_tokens": max_tokens - len(inputs["input_ids"][0]) - 30,
"stop": conv.stop_str,
"stop_token_ids": conv.stop_token_ids,
"echo": False,
"repetition_penalty": repetition_penalty,
}
chatio = SimpleChatIO()
chatio.prompt_for_output(conv.roles[1])
output_stream = generate_stream_func(model, tokenizer, gen_params, device)
output = chatio.stream_output(output_stream)
if HF_TOKEN and DATASET_REPOSITORY:
try:
now = datetime.datetime.now()
current_time = now.strftime("%Y-%m-%d %H:%M:%S")
print(f"[{current_time}] Pushing prompt and completion to the Hub")
save_inputs_and_outputs(
now,
prompt,
output,
{
"temperature": temperature,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
)
except Exception as e:
print(e)
return output, gr.update(interactive=True), gr.update(interactive=True)
except Exception as e:
print(e)
import traceback
if SLACK_WEBHOOK:
payload_dic = {
"text": f"BASE_MODEL: {BASE_MODEL}\n LORA_WEIGHTS: {LORA_WEIGHTS_HF}\n"
+ f"instruction: {instruction}\ninput: {input}\ntemperature: {temperature}\n"
+ f"max_tokens: {max_tokens}\nrepetition_penalty: {repetition_penalty}\n\n"
+ str(traceback.format_exc()),
"username": "Hugging Face Space",
"channel": "#monitor",
}
try:
requests.post(SLACK_WEBHOOK, data=json.dumps(payload_dic))
except Exception:
pass
return (
"Error happend. Please return later.",
gr.update(interactive=True),
gr.update(interactive=True),
)
def reset_textbox():
return gr.update(value=""), gr.update(value=""), gr.update(value="")
def no_interactive() -> Tuple[gr.Request, gr.Request]:
return gr.update(interactive=False), gr.update(interactive=False)
title = """<h1 align="center">stormy 7B 10epochs</h1>"""
theme = gr.themes.Default(primary_hue="green")
description = (
"The official demo for **[izumi-lab/stormy-7b-10ep](https://huggingface.co/izumi-lab/stormy-7b-10ep)**. "
"It is a 7B-parameter CALM model finetuned to follow instructions. "
"It is trained on the dataset specially extracted from [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) dataset. "
"For more information, please visit [the project's website](https://llm.msuzuki.me). "
"This model can output up to 256 tokens. "
"It takes about **1 minute** to output. When access is concentrated, the operation may become slow."
)
with gr.Blocks(
css="""#col_container { margin-left: auto; margin-right: auto;}""",
theme=theme,
) as demo:
gr.HTML(title)
gr.Markdown(description)
with gr.Column(elem_id="col_container", visible=False) as main_block:
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
lines=3, label="Instruction", placeholder="ใใใซใกใฏ"
)
with gr.Row():
with gr.Column(scale=3):
clear_button = gr.Button("Clear").style(full_width=True)
with gr.Column(scale=5):
submit_button = gr.Button("Submit").style(full_width=True)
outputs = gr.Textbox(lines=4, label="Output")
# inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=True):
temperature = gr.Slider(
minimum=0,
maximum=1.0,
value=0.0,
step=0.05,
interactive=True,
label="Temperature",
)
max_tokens = gr.Slider(
minimum=20,
maximum=256,
value=128,
step=1,
interactive=True,
label="Max length (Pre-prompt + instruction + input + output)",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.05,
step=0.05,
interactive=True,
label="Repetition penalty",
)
with gr.Column(elem_id="user_consent_container") as user_consent_block:
# Get user consent
gr.Markdown(
"""
## User Consent for Data Collection, Use, and Sharing:
By using our app, you acknowledge and agree to the following terms regarding the data you provide:
- **Collection**: We may collect inputs you type into our app.
- **Use**: We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications.
- **Sharing and Publication**: Your input data may be published, shared with third parties, or used for analysis and reporting purposes.
- **Data Retention**: We may retain your input data for as long as necessary.
By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app.
## ใใผใฟๅ้ใๅฉ็จใๅ
ฑๆใซ้ขใใใฆใผใถใผใฎๅๆ๏ผ
ๆฌใขใใชใไฝฟ็จใใใใจใซใใใๆไพใใใใผใฟใซ้ขใใไปฅไธใฎๆกไปถใซๅๆใใใใฎใจใใพใ๏ผ
- **ๅ้**: ๆฌใขใใชใซๅ
ฅๅใใใใใญในใใใผใฟใฏๅ้ใใใๅ ดๅใใใใพใใ
- **ๅฉ็จ**: ๅ้ใใใใใผใฟใฏ็ ็ฉถใใๅ็จใขใใชใฑใผใทใงใณใๅซใใตใผใในใฎ้็บใซไฝฟ็จใใใๅ ดๅใใใใพใใ
- **ๅ
ฑๆใใใณๅ
ฌ้**: ๅ
ฅๅใใผใฟใฏ็ฌฌไธ่
ใจๅ
ฑๆใใใใใๅๆใๅ
ฌ้ใฎ็ฎ็ใงไฝฟ็จใใใๅ ดๅใใใใพใใ
- **ใใผใฟไฟๆ**: ๅ
ฅๅใใผใฟใฏๅฟ
่ฆใช้ใไฟๆใใใพใใ
ๆฌใขใใชใๅผใ็ถใไฝฟ็จใใใใจใซใใใไธ่จใฎใใใซใใผใฟใฎๅ้ใปๅฉ็จใปๅ
ฑๆใซใคใใฆๅๆใใพใใใใผใฟใฎๅฉ็จๆนๆณใซๅๆใใชใๅ ดๅใฏใๆฌใขใใชใไฝฟ็จใใชใใงใใ ใใใ
"""
)
accept_button = gr.Button("I Agree")
def enable_inputs():
return user_consent_block.update(visible=False), main_block.update(
visible=True
)
accept_button.click(
fn=enable_inputs,
inputs=[],
outputs=[user_consent_block, main_block],
queue=False,
)
submit_button.click(no_interactive, [], [submit_button, clear_button])
submit_button.click(
evaluate,
[instruction, temperature, max_tokens, repetition_penalty],
[outputs, submit_button, clear_button],
)
clear_button.click(reset_textbox, [], [instruction, outputs], queue=False)
demo.queue(max_size=20, concurrency_count=NUM_THREADS, api_open=False).launch(
server_name="0.0.0.0", server_port=7860
)
|