import gradio as gr from huggingface_hub import InferenceClient import os from rag import local_retriever, global_retriever from transformers import LlamaTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, search_strategy, top_p, ): if search_strategy == "Global": return global_retriever(message, 2, "multiple paragraphs") else: messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=6192, stream=True, temperature=1.0, top_p=top_p, ): token = message.choices[0].delta.content response += token return response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a medical assistant Chatbot. For any query that you don't know, you will say 'I don't know'. You will answer with the given information:", label="System message", ), gr.Dropdown( choices=["Local", "Global"], value="Local", label="Select search strategy" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()