Spaces:
Sleeping
Sleeping
invincible-jha
commited on
Commit
•
1db11d3
1
Parent(s):
d2c8622
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,150 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import edge_tts
|
3 |
+
import asyncio
|
4 |
+
import tempfile
|
5 |
+
import numpy as np
|
6 |
+
import soxr
|
7 |
+
from pydub import AudioSegment
|
8 |
+
import torch
|
9 |
+
import sentencepiece as spm
|
10 |
+
import onnxruntime as ort
|
11 |
+
from huggingface_hub import hf_hub_download, InferenceClient
|
12 |
+
import requests
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
+
import urllib
|
15 |
+
import random
|
16 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# List of user agents to choose from for requests
|
19 |
+
_useragent_list = [
|
20 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
|
21 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
22 |
+
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
23 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
|
24 |
+
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
|
25 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
|
26 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
|
27 |
+
]
|
28 |
+
|
29 |
+
def get_useragent():
|
30 |
+
"""Returns a random user agent from the list."""
|
31 |
+
return random.choice(_useragent_list)
|
32 |
+
|
33 |
+
def extract_text_from_webpage(html_content):
|
34 |
+
"""Extracts visible text from HTML content using BeautifulSoup."""
|
35 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
36 |
+
# Remove unwanted tags
|
37 |
+
for tag in soup(["script", "style", "header", "footer", "nav"]):
|
38 |
+
tag.extract()
|
39 |
+
# Get the remaining visible text
|
40 |
+
visible_text = soup.get_text(strip=True)
|
41 |
+
visible_text = visible_text[:8000]
|
42 |
+
return visible_text
|
43 |
+
|
44 |
+
def search(term, num_results=2, timeout=5, ssl_verify=None):
|
45 |
+
"""Performs a Google search and returns the results."""
|
46 |
+
escaped_term = urllib.parse.quote_plus(term)
|
47 |
+
all_results = []
|
48 |
+
resp = requests.get(
|
49 |
+
url="https://www.google.com/search",
|
50 |
+
headers={"User-Agent": get_useragent()}, # Set random user agent
|
51 |
+
params={
|
52 |
+
"q": term,
|
53 |
+
"num": num_results,
|
54 |
+
"udm": 14,
|
55 |
+
},
|
56 |
+
timeout=timeout,
|
57 |
+
verify=ssl_verify,
|
58 |
+
)
|
59 |
+
resp.raise_for_status() # Raise an exception if request fails
|
60 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
61 |
+
result_block = soup.find_all("div", attrs={"class": "g"})
|
62 |
+
for result in result_block:
|
63 |
+
link = result.find("a", href=True)
|
64 |
+
if link:
|
65 |
+
link = link["href"]
|
66 |
+
try:
|
67 |
+
# Fetch webpage content
|
68 |
+
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
|
69 |
+
webpage.raise_for_status()
|
70 |
+
# Extract visible text from webpage
|
71 |
+
visible_text = extract_text_from_webpage(webpage.text)
|
72 |
+
all_results.append({"link": link, "text": visible_text})
|
73 |
+
except requests.exceptions.RequestException as e:
|
74 |
+
print(f"Error fetching or processing {link}: {e}")
|
75 |
+
all_results.append({"link": link, "text": None})
|
76 |
+
else:
|
77 |
+
all_results.append({"link": None, "text": None})
|
78 |
+
print(all_results)
|
79 |
+
return all_results
|
80 |
+
|
81 |
+
# Speech Recognition Model Configuration
|
82 |
+
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
83 |
+
sample_rate = 16000
|
84 |
+
|
85 |
+
# Download preprocessor, encoder and tokenizer
|
86 |
+
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
87 |
+
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
88 |
+
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
89 |
+
|
90 |
+
# Mistral Model Configuration
|
91 |
+
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
92 |
+
system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
93 |
+
|
94 |
+
def resample(audio_fp32, sr):
|
95 |
+
return soxr.resample(audio_fp32, sr, sample_rate)
|
96 |
+
|
97 |
+
def to_float32(audio_buffer):
|
98 |
+
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
99 |
+
|
100 |
+
def transcribe(audio_path):
|
101 |
+
audio_file = AudioSegment.from_file(audio_path)
|
102 |
+
sr = audio_file.frame_rate
|
103 |
+
audio_buffer = np.array(audio_file.get_array_of_samples())
|
104 |
+
|
105 |
+
audio_fp32 = to_float32(audio_buffer)
|
106 |
+
audio_16k = resample(audio_fp32, sr)
|
107 |
+
|
108 |
+
input_signal = torch.tensor(audio_16k).unsqueeze(0)
|
109 |
+
length = torch.tensor(len(audio_16k)).unsqueeze(0)
|
110 |
+
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
|
111 |
+
|
112 |
+
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
|
113 |
+
|
114 |
+
blank_id = tokenizer.vocab_size()
|
115 |
+
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
|
116 |
+
text = tokenizer.decode_ids(decoded_prediction)
|
117 |
+
|
118 |
+
return text
|
119 |
+
|
120 |
+
def model(text, web_search):
|
121 |
+
if web_search is True:
|
122 |
+
"""Performs a web search, feeds the results to a language model, and returns the answer."""
|
123 |
+
web_results = search(text)
|
124 |
+
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
125 |
+
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
|
126 |
+
stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
|
127 |
+
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
128 |
+
else:
|
129 |
+
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
130 |
+
stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False)
|
131 |
+
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
|
132 |
+
|
133 |
+
async def respond(audio, web_search):
|
134 |
+
user = transcribe(audio)
|
135 |
+
reply = model(user, web_search)
|
136 |
+
communicate = edge_tts.Communicate(reply)
|
137 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
138 |
+
tmp_path = tmp_file.name
|
139 |
+
await communicate.save(tmp_path)
|
140 |
+
return tmp_path
|
141 |
+
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
with gr.Row():
|
144 |
+
web_search = gr.Checkbox(label="Web Search", value=False)
|
145 |
+
input = gr.Audio(label="User Input", sources="microphone", type="filepath")
|
146 |
+
output = gr.Audio(label="AI", autoplay=True)
|
147 |
+
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
+
demo.queue(max_size=200).launch()
|