Spaces:
Runtime error
Runtime error
File size: 51,838 Bytes
bb90efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 |
# ------------------------------------------
# TextDiffuser: Diffusion Models as Text Painters
# Paper Link: https://arxiv.org/abs/2305.10855
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser
# Copyright (c) Microsoft Corporation.
# This file provides the inference script.
# ------------------------------------------
import os
import re
import zipfile
if not os.path.exists('textdiffuser-ckpt'):
os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/textdiffuser-ckpt.zip')
with zipfile.ZipFile('textdiffuser-ckpt.zip', 'r') as zip_ref:
zip_ref.extractall('.')
if not os.path.exists('images'):
os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/images.zip')
with zipfile.ZipFile('images.zip', 'r') as zip_ref:
zip_ref.extractall('.')
os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/404.jpg')
if not os.path.exists('Arial.ttf'):
os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/Arial.ttf')
import cv2
import random
import logging
import argparse
import numpy as np
from pathlib import Path
from tqdm.auto import tqdm
from typing import Optional
from packaging import version
from termcolor import colored
from PIL import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance # import for visualization
from huggingface_hub import HfFolder, Repository, create_repo, whoami
import datasets
from datasets import load_dataset
from datasets import disable_caching
import torch
import torch.utils.checkpoint
import torch.nn.functional as F
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate
from diffusers.utils.import_utils import is_xformers_available
import transformers
from transformers import CLIPTextModel, CLIPTokenizer
from util import segmentation_mask_visualization, make_caption_pil, combine_image, transform_mask_pil, filter_segmentation_mask, inpainting_merge_image
from model.layout_generator import get_layout_from_prompt
from model.text_segmenter.unet import UNet
disable_caching()
check_min_version("0.15.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default='runwayml/stable-diffusion-v1-5', # no need to modify this
help="Path to pretrained model or model identifier from huggingface.co/models. Please do not modify this.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--mode",
type=str,
default="text-to-image",
# required=True,
choices=["text-to-image", "text-to-image-with-template", "text-inpainting"],
help="Three modes can be used.",
)
parser.add_argument(
"--prompt",
type=str,
default="",
# required=True,
help="The text prompts provided by users.",
)
parser.add_argument(
"--template_image",
type=str,
default="",
help="The template image should be given when using 【text-to-image-with-template】 mode.",
)
parser.add_argument(
"--original_image",
type=str,
default="",
help="The original image should be given when using 【text-inpainting】 mode.",
)
parser.add_argument(
"--text_mask",
type=str,
default="",
help="The text mask should be given when using 【text-inpainting】 mode.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for reproducible training."
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--classifier_free_scale",
type=float,
default=7.5, # following stable diffusion (https://github.com/CompVis/stable-diffusion)
help="Classifier free scale following https://arxiv.org/abs/2207.12598.",
)
parser.add_argument(
"--drop_caption",
action="store_true",
help="Whether to drop captions during training following https://arxiv.org/abs/2207.12598.."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub."
)
parser.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub."
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default='fp16',
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank"
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=5,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more docs"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default='textdiffuser-ckpt/diffusion_backbone', # should be specified during inference
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention",
action="store_true",
help="Whether or not to use xformers."
)
parser.add_argument(
"--font_path",
type=str,
default='Arial.ttf',
help="The path of font for visualization."
)
parser.add_argument(
"--sample_steps",
type=int,
default=50, # following stable diffusion (https://github.com/CompVis/stable-diffusion)
help="Diffusion steps for sampling."
)
parser.add_argument(
"--vis_num",
type=int,
default=4, # please decreases the number if out-of-memory error occurs
help="Number of images to be sample. Please decrease it when encountering out of memory error."
)
parser.add_argument(
"--binarization",
action="store_true",
help="Whether to binarize the template image."
)
parser.add_argument(
"--use_pillow_segmentation_mask",
type=bool,
default=True,
help="In the 【text-to-image】 mode, please specify whether to use the segmentation masks provided by PILLOW"
)
parser.add_argument(
"--character_segmenter_path",
type=str,
default='textdiffuser-ckpt/text_segmenter.pth',
help="checkpoint of character-level segmenter"
)
args = parser.parse_args()
print(f'{colored("[√]", "green")} Arguments are loaded.')
print(args)
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
print(f'{colored("[√]", "green")} Logging dir is set to {logging_dir}.')
accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
accelerator = Accelerator(
gradient_accumulation_steps=1,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
logging_dir=logging_dir,
project_config=accelerator_project_config,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
print(args.output_dir)
# Load scheduler, tokenizer and models.
tokenizer15 = CLIPTokenizer.from_pretrained(
'runwayml/stable-diffusion-v1-5', subfolder="tokenizer", revision=args.revision
)
tokenizer21 = CLIPTokenizer.from_pretrained(
'stabilityai/stable-diffusion-2-1', subfolder="tokenizer", revision=args.revision
)
text_encoder15 = CLIPTextModel.from_pretrained(
'runwayml/stable-diffusion-v1-5', subfolder="text_encoder", revision=args.revision
)
text_encoder21 = CLIPTextModel.from_pretrained(
'stabilityai/stable-diffusion-2-1', subfolder="text_encoder", revision=args.revision
)
vae15 = AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="vae", revision=args.revision).cuda()
unet15 = UNet2DConditionModel.from_pretrained(
'./textdiffuser-ckpt/diffusion_backbone_1.5', subfolder="unet", revision=None
).cuda()
vae21 = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-2-1', subfolder="vae", revision=args.revision).cuda()
unet21 = UNet2DConditionModel.from_pretrained(
'./textdiffuser-ckpt/diffusion_backbone_2.1', subfolder="unet", revision=None
).cuda()
scheduler15 = DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="scheduler")
scheduler21 = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-2-1', subfolder="scheduler")
# Freeze vae and text_encoder
vae15.requires_grad_(False)
vae21.requires_grad_(False)
text_encoder15.requires_grad_(False)
text_encoder21.requires_grad_(False)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "unet"))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
for i in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# setup schedulers
# sample_num = args.vis_num
def to_tensor(image):
if isinstance(image, Image.Image):
image = np.array(image)
elif not isinstance(image, np.ndarray):
raise TypeError("Error")
image = image.astype(np.float32) / 255.0
image = np.transpose(image, (2, 0, 1))
tensor = torch.from_numpy(image)
return tensor
import unicodedata
def full2half(text):
half = []
for char in text:
code = ord(char)
if code == 0x3000:
half.append(chr(0x0020))
elif 0xFF01 <= code <= 0xFF5E:
half.append(chr(code - 0xFEE0))
else:
half.append(char)
return ''.join(half)
def has_chinese_char(string):
pattern = re.compile('[\u4e00-\u9fa5]')
if pattern.search(string):
return True
else:
return False
image_404 = Image.open('404.jpg')
def text_to_image(prompt,slider_step,slider_guidance,slider_batch, version):
print(f'【version】{version}')
if version == 'Stable Diffusion v2.1':
vae = vae21
unet = unet21
text_encoder = text_encoder21
tokenizer = tokenizer21
scheduler = scheduler21
slider_batch = min(slider_batch, 1)
size = 768
elif version == 'Stable Diffusion v1.5':
vae = vae15
unet = unet15
text_encoder = text_encoder15
tokenizer = tokenizer15
scheduler = scheduler15
size = 512
else:
assert False, 'Version Not Found'
if has_chinese_char(prompt):
print('trigger')
return image_404, None
prompt = full2half(prompt)
prompt = prompt.replace('"', "'")
prompt = prompt.replace('‘', "'")
prompt = prompt.replace('’', "'")
prompt = prompt.replace('“', "'")
prompt = prompt.replace('”', "'")
prompt = re.sub(r"[^a-zA-Z0-9'\" ]+", "", prompt)
if slider_step>=50:
slider_step = 50
args.prompt = prompt
sample_num = slider_batch
seed = random.randint(0, 10000000)
set_seed(seed)
scheduler.set_timesteps(slider_step)
noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda") # (b, 4, 64, 64)
input = noise # (b, 4, 64, 64)
captions = [args.prompt] * sample_num
captions_nocond = [""] * sample_num
print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.')
# encode text prompts
inputs = tokenizer(
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids # (b, 77)
encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768)
print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.')
inputs_nocond = tokenizer(
captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids # (b, 77)
encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768)
print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.')
#### text-to-image ####
render_image, segmentation_mask_from_pillow = get_layout_from_prompt(args)
segmentation_mask = torch.Tensor(np.array(segmentation_mask_from_pillow)).cuda() # (512, 512)
segmentation_mask = filter_segmentation_mask(segmentation_mask)
segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest')
segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (1, 1, 256, 256)
print(f'{colored("[√]", "green")} character-level segmentation_mask: {segmentation_mask.shape}.')
feature_mask = torch.ones(sample_num, 1, size//8, size//8).to('cuda') # (b, 1, 64, 64)
masked_image = torch.zeros(sample_num, 3, size, size).to('cuda') # (b, 3, 512, 512)
masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64)
masked_feature = masked_feature * vae.config.scaling_factor
print(f'{colored("[√]", "green")} feature_mask: {feature_mask.shape}.')
print(f'{colored("[√]", "green")} masked_feature: {masked_feature.shape}.')
# diffusion process
intermediate_images = []
for t in tqdm(scheduler.timesteps):
with torch.no_grad():
noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
intermediate_images.append(prev_noisy_sample)
# decode and visualization
input = 1 / vae.config.scaling_factor * input
sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512)
image_pil = render_image.resize((size,size))
segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy()
character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((size,size))
character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask)
character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size))
caption_pil = make_caption_pil(args.font_path, captions)
# save pred_img
pred_image_list = []
for image in sample_images.float():
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
pred_image_list.append(image)
blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil)
intermediate_result = Image.new('RGB', (size*3, size))
intermediate_result.paste(image_pil, (0, 0))
intermediate_result.paste(character_mask_pil, (size, 0))
intermediate_result.paste(character_mask_highlight_pil, (size*2, 0))
return blank_pil, intermediate_result
# load character-level segmenter
segmenter = UNet(3, 96, True).cuda()
segmenter = torch.nn.DataParallel(segmenter)
segmenter.load_state_dict(torch.load(args.character_segmenter_path))
segmenter.eval()
print(f'{colored("[√]", "green")} Text segmenter is successfully loaded.')
def text_to_image_with_template(prompt,template_image,slider_step,slider_guidance,slider_batch, binary, version):
if version == 'Stable Diffusion v2.1':
vae = vae21
unet = unet21
text_encoder = text_encoder21
tokenizer = tokenizer21
scheduler = scheduler21
slider_batch = min(slider_batch, 1)
size = 768
elif version == 'Stable Diffusion v1.5':
vae = vae15
unet = unet15
text_encoder = text_encoder15
tokenizer = tokenizer15
scheduler = scheduler15
size = 512
else:
assert False, 'Version Not Found'
if has_chinese_char(prompt):
print('trigger')
return image_404, None
if slider_step>=50:
slider_step = 50
orig_template_image = template_image.resize((size,size)).convert('RGB')
args.prompt = prompt
sample_num = slider_batch
# If passed along, set the training seed now.
# seed = slider_seed
seed = random.randint(0, 10000000)
set_seed(seed)
scheduler.set_timesteps(slider_step)
noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda") # (b, 4, 64, 64)
input = noise # (b, 4, 64, 64)
captions = [args.prompt] * sample_num
captions_nocond = [""] * sample_num
print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.')
# encode text prompts
inputs = tokenizer(
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids # (b, 77)
encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768)
print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.')
inputs_nocond = tokenizer(
captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids # (b, 77)
encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768)
print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.')
#### text-to-image-with-template ####
template_image = template_image.resize((256,256)).convert('RGB')
# whether binarization is needed
print(f'{colored("[Warning]", "red")} args.binarization is set to {binary}. You may need it when using handwritten images as templates.')
if binary:
gray = ImageOps.grayscale(template_image)
binary = gray.point(lambda x: 255 if x > 96 else 0, '1')
template_image = binary.convert('RGB')
# to_tensor = transforms.ToTensor()
image_tensor = to_tensor(template_image).unsqueeze(0).cuda().sub_(0.5).div_(0.5) # (b, 3, 256, 256)
with torch.no_grad():
segmentation_mask = segmenter(image_tensor) # (b, 96, 256, 256)
segmentation_mask = segmentation_mask.max(1)[1].squeeze(0) # (256, 256)
segmentation_mask = filter_segmentation_mask(segmentation_mask) # (256, 256)
segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest') # (b, 1, 256, 256)
segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (b, 1, 256, 256)
print(f'{colored("[√]", "green")} Character-level segmentation_mask: {segmentation_mask.shape}.')
feature_mask = torch.ones(sample_num, 1, size//8, size//8).to('cuda') # (b, 1, 64, 64)
masked_image = torch.zeros(sample_num, 3, size, size).to('cuda') # (b, 3, 512, 512)
masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64)
masked_feature = masked_feature * vae.config.scaling_factor # (b, 4, 64, 64)
# diffusion process
intermediate_images = []
for t in tqdm(scheduler.timesteps):
with torch.no_grad():
noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
intermediate_images.append(prev_noisy_sample)
# decode and visualization
input = 1 / vae.config.scaling_factor * input
sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512)
image_pil = None
segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy()
character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((size,size))
character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask)
character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size))
caption_pil = make_caption_pil(args.font_path, captions)
# save pred_img
pred_image_list = []
for image in sample_images.float():
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
pred_image_list.append(image)
blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil)
intermediate_result = Image.new('RGB', (size*3, size))
intermediate_result.paste(orig_template_image, (0, 0))
intermediate_result.paste(character_mask_pil, (size, 0))
intermediate_result.paste(character_mask_highlight_pil, (size*2, 0))
return blank_pil, intermediate_result
def text_inpainting(prompt,orig_image,mask_image,slider_step,slider_guidance,slider_batch, version):
if version == 'Stable Diffusion v2.1':
vae = vae21
unet = unet21
text_encoder = text_encoder21
tokenizer = tokenizer21
scheduler = scheduler21
slider_batch = min(slider_batch, 1)
size = 768
elif version == 'Stable Diffusion v1.5':
vae = vae15
unet = unet15
text_encoder = text_encoder15
tokenizer = tokenizer15
scheduler = scheduler15
size = 512
else:
assert False, 'Version Not Found'
if has_chinese_char(prompt):
print('trigger')
return image_404, None
if slider_step>=50:
slider_step = 50
args.prompt = prompt
sample_num = slider_batch
# If passed along, set the training seed now.
# seed = slider_seed
seed = random.randint(0, 10000000)
set_seed(seed)
scheduler.set_timesteps(slider_step)
noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda") # (b, 4, 64, 64)
input = noise # (b, 4, 64, 64)
captions = [args.prompt] * sample_num
captions_nocond = [""] * sample_num
print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.')
# encode text prompts
inputs = tokenizer(
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids # (b, 77)
encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768)
print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.')
inputs_nocond = tokenizer(
captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids # (b, 77)
encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768)
print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.')
mask_image = cv2.resize(mask_image, (size,size))
# mask_image = mask_image.resize((512,512)).convert('RGB')
text_mask = np.array(mask_image)
threshold = 128
_, text_mask = cv2.threshold(text_mask, threshold, 255, cv2.THRESH_BINARY)
text_mask = Image.fromarray(text_mask).convert('RGB').resize((256,256))
text_mask.save('text_mask.png')
text_mask_tensor = to_tensor(text_mask).unsqueeze(0).cuda().sub_(0.5).div_(0.5)
with torch.no_grad():
segmentation_mask = segmenter(text_mask_tensor)
segmentation_mask = segmentation_mask.max(1)[1].squeeze(0)
segmentation_mask = filter_segmentation_mask(segmentation_mask)
segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest')
image_mask = transform_mask_pil(mask_image, size)
image_mask = torch.from_numpy(image_mask).cuda().unsqueeze(0).unsqueeze(0)
orig_image = orig_image.convert('RGB').resize((size,size))
image = orig_image
image_tensor = to_tensor(image).unsqueeze(0).cuda().sub_(0.5).div_(0.5)
masked_image = image_tensor * (1-image_mask)
masked_feature = vae.encode(masked_image).latent_dist.sample().repeat(sample_num, 1, 1, 1)
masked_feature = masked_feature * vae.config.scaling_factor
image_mask = torch.nn.functional.interpolate(image_mask, size=(size//2, size//2), mode='nearest').repeat(sample_num, 1, 1, 1)
segmentation_mask = segmentation_mask * image_mask
feature_mask = torch.nn.functional.interpolate(image_mask, size=(size//8, size//8), mode='nearest')
# diffusion process
intermediate_images = []
for t in tqdm(scheduler.timesteps):
with torch.no_grad():
noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
intermediate_images.append(prev_noisy_sample)
# decode and visualization
input = 1 / vae.config.scaling_factor * input
sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512)
image_pil = None
segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy()
character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((512,512))
character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask)
character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size))
caption_pil = make_caption_pil(args.font_path, captions)
# save pred_img
pred_image_list = []
for image in sample_images.float():
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
# need to merge
# image = inpainting_merge_image(orig_image, Image.fromarray(mask_image).convert('L'), image)
pred_image_list.append(image)
character_mask_pil.save('character_mask_pil.png')
character_mask_highlight_pil.save('character_mask_highlight_pil.png')
blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil)
background = orig_image.resize((512, 512))
alpha = Image.new('L', background.size, int(255 * 0.2))
background.putalpha(alpha)
# foreground
foreground = Image.fromarray(mask_image).convert('L').resize((512, 512))
threshold = 200
alpha = foreground.point(lambda x: 0 if x > threshold else 255, '1')
foreground.putalpha(alpha)
merge_image = Image.alpha_composite(foreground.convert('RGBA'), background.convert('RGBA')).convert('RGB')
intermediate_result = Image.new('RGB', (512*3, 512))
intermediate_result.paste(merge_image, (0, 0))
intermediate_result.paste(character_mask_pil, (512, 0))
intermediate_result.paste(character_mask_highlight_pil, (512*2, 0))
return blank_pil, intermediate_result
import gradio as gr
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
TextDiffuser: Diffusion Models as Text Painters
</h1>
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
[<a href="https://arxiv.org/abs/2305.10855" style="color:blue;">arXiv</a>]
[<a href="https://github.com/microsoft/unilm/tree/master/textdiffuser" style="color:blue;">Code</a>]
[<a href="https://jingyechen.github.io/textdiffuser/" style="color:blue;">ProjectPage</a>]
</h3>
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
We propose <b>TextDiffuser</b>, a flexible and controllable framework to generate images with visually appealing text that is coherent with backgrounds.
Main features include: (a) <b><font color="#A52A2A">Text-to-Image</font></b>: The user provides a prompt and encloses the keywords with single quotes (e.g., a text image of ‘hello’). The model first determines the layout of the keywords and then draws the image based on the layout and prompt. (b) <b><font color="#A52A2A">Text-to-Image with Templates</font></b>: The user provides a prompt and a template image containing text, which can be a printed, handwritten, or scene text image. These template images can be used to determine the layout of the characters. (c) <b><font color="#A52A2A">Text Inpainting</font></b>: The user provides an image and specifies the region to be modified along with the desired text content. The model is able to modify the original text or add text to areas without text.
</h2>
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
🔥 <b>News</b>: We further trained TextDiffuser based on <b>Stable Diffusion v2.1</b> pre-trained model, enlarging the resolution from 512x512 to <b>768x768</b> to enhance the legibility of small text. Additionally, we fine-tuned the model with images with <b>high aesthetical score</b>, enabling generating images with richer details.
</h2>
<img src="file/images/huggingface_blank.jpg" alt="textdiffuser">
</div>
""")
with gr.Tab("Text-to-Image"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Input your prompt here. Please enclose keywords with 'single quotes', you may refer to the examples below. The current version only supports input in English characters.", placeholder="Placeholder 'Team' hat")
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v1.5")
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
# slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
button = gr.Button("Generate")
with gr.Column(scale=1):
output = gr.Image(label='Generated image')
with gr.Accordion("Intermediate results", open=False):
gr.Markdown("Layout, segmentation mask, and details of segmentation mask from left to right.")
intermediate_results = gr.Image(label='')
gr.Markdown("## Prompt Examples")
gr.Examples(
[
["Distinguished poster of 'SPIDERMAN'. Trending on ArtStation and Pixiv. A vibrant digital oil painting. A highly detailed fantasy character illustration by Wayne Reynolds and Charles Monet and Gustave Dore and Carl Critchlow and Bram Sels"],
["A detailed portrait of a fox guardian with a shield with 'Kung Fu' written on it, by victo ngai and justin gerard, digital art, realistic painting, very detailed, fantasy, high definition, cinematic light, dnd, trending on artstation"],
["portrait of a 'dragon', concept art, sumi - e style, intricate linework, green smoke, artstation, trending, highly detailed, smooth, focus, art by yoji shinkawa,"],
["elderly woman dressed in extremely colorful clothes with many strange patterns posing for a high fashion photoshoot of 'FASHION', haute couture, golden hour, artstation, by J. C. Leyendecker and Peter Paul Rubens"],
["epic digital art of a luxury yacht named 'Time Machine' driving through very dark hard edged city towers from tron movie, faint tall mountains in background, wlop, pixiv"],
["A poster of 'Adventurer'. A beautiful so tall boy with big eyes and small nose is in the jungle, he wears normal clothes and shows his full length, which we see from the front, unreal engine, cozy indoor lighting, artstation, detailed"],
["A poster of 'AI BABY'. Cute and adorable cartoon it baby, fantasy, dreamlike, surrealism, super cute, trending on artstation"],
["'Team' hat"],
["Thanksgiving 'Fam' Mens T Shirt"],
["A storefront with 'Hello World' written on it."],
["A poster titled 'Quails of North America', showing different kinds of quails."],
["A storefront with 'Deep Learning' written on it."],
["An antique bottle labeled 'Energy Tonic'"],
["A TV show poster titled 'Tango argentino'"],
["A TV show poster with logo 'The Dry' on it"],
["Stupid 'History' eBook Tales of Stupidity Strangeness"],
["Photos of 'Sampa Hostel'"],
["A large recipe book titled 'Recipes from Peru'."],
["New York Skyline with 'Diffusion' written with fireworks on the sky"],
["Books with the word 'Science' printed on them"],
["A globe with the words 'Planet Earth' written in bold letters with continents in bright colors"],
["A logo for the company 'EcoGrow', where the letters look like plants"],
],
prompt,
examples_per_page=100
)
button.click(text_to_image, inputs=[prompt,slider_step,slider_guidance,slider_batch,radio], outputs=[output,intermediate_results])
with gr.Tab("Text-to-Image-with-Template"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label='Input your prompt here.')
template_image = gr.Image(label='Template image', type="pil")
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v1.5")
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
# binary = gr.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?")
binary = gr.Checkbox(label="Binarization", bool=True, info="Whether to binarize the template image? You may need it when using handwritten images as templates.")
button = gr.Button("Generate")
with gr.Column(scale=1):
output = gr.Image(label='Generated image')
with gr.Accordion("Intermediate results", open=False):
gr.Markdown("Template image, segmentation mask, and details of segmentation mask from left to right.")
intermediate_results = gr.Image(label='')
gr.Markdown("## Prompt and Template-Image Examples")
gr.Examples(
[
["summer garden, artwork, highly detailed, sharp focus, realist, digital painting, artstation, concept art, art by jay oh, greg rutkowski, wlop", './images/text-to-image-with-template/6.jpg', False],
["a hand-drawn blueprint for a time machine with the caption 'Time traveling device'", './images/text-to-image-with-template/5.jpg', False],
["a book called summer vibe written by diffusion model", './images/text-to-image-with-template/7.jpg', False],
["a work company", './images/text-to-image-with-template/8.jpg', False],
["a book of AI in next century written by AI robot ", './images/text-to-image-with-template/9.jpg', False],
["A board saying having a dog named shark at the beach was a mistake", './images/text-to-image-with-template/1.jpg', False],
["an elephant holds a newspaper that is written elephant take over the world", './images/text-to-image-with-template/2.jpg', False],
["a mouse with a flashlight saying i am afraid of the dark", './images/text-to-image-with-template/4.jpg', False],
["a birthday cake of happy birthday to xyz", './images/text-to-image-with-template/10.jpg', False],
["a poster of monkey music festival", './images/text-to-image-with-template/11.jpg', False],
["a meme of are you kidding", './images/text-to-image-with-template/12.jpg', False],
["a 3d model of a 1980s-style computer with the text my old habit on the screen", './images/text-to-image-with-template/13.jpg', True],
["a board of hello world", './images/text-to-image-with-template/15.jpg', True],
["a microsoft bag", './images/text-to-image-with-template/16.jpg', True],
["a dog holds a paper saying please adopt me", './images/text-to-image-with-template/17.jpg', False],
["a hello world banner", './images/text-to-image-with-template/18.jpg', False],
["a stop pizza", './images/text-to-image-with-template/19.jpg', False],
["a dress with text do not read the next sentence", './images/text-to-image-with-template/20.jpg', False],
],
[prompt,template_image, binary],
examples_per_page=100
)
button.click(text_to_image_with_template, inputs=[prompt,template_image,slider_step,slider_guidance,slider_batch,binary,radio], outputs=[output,intermediate_results])
with gr.Tab("Text-Inpainting"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label='Input your prompt here.')
with gr.Row():
orig_image = gr.Image(label='Original image', type="pil")
mask_image = gr.Image(label='Mask image', type="numpy")
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v1.5")
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
button = gr.Button("Generate")
with gr.Column(scale=1):
output = gr.Image(label='Generated image')
with gr.Accordion("Intermediate results", open=False):
gr.Markdown("Masked image, segmentation mask, and details of segmentation mask from left to right.")
intermediate_results = gr.Image(label='')
gr.Markdown("## Prompt, Original Image, and Mask Examples")
gr.Examples(
[
["eye on security protection", './images/text-inpainting/1.jpg', './images/text-inpainting/1mask.jpg'],
["a logo of poppins", './images/text-inpainting/2.jpg', './images/text-inpainting/2mask.jpg'],
["tips for middle space living ", './images/text-inpainting/3.jpg', './images/text-inpainting/3mask.jpg'],
["george is a proud big sister", './images/text-inpainting/5.jpg', './images/text-inpainting/5mask.jpg'],
["we are the great people", './images/text-inpainting/6.jpg', './images/text-inpainting/6mask.jpg'],
["tech house interesting terrace party", './images/text-inpainting/7.jpg', './images/text-inpainting/7mask.jpg'],
["2023", './images/text-inpainting/8.jpg', './images/text-inpainting/8mask.jpg'],
["wear protective equipment necessary", './images/text-inpainting/9.jpg', './images/text-inpainting/9mask.jpg'],
["a good day in the hometown", './images/text-inpainting/10.jpg', './images/text-inpainting/10mask.jpg'],
["a boy paints good morning on a board", './images/text-inpainting/11.jpg', './images/text-inpainting/11mask.jpg'],
["the word my gift on a basketball", './images/text-inpainting/13.jpg', './images/text-inpainting/13mask.jpg'],
["a logo of mono", './images/text-inpainting/14.jpg', './images/text-inpainting/14mask.jpg'],
["a board saying assyrian on unflagging fry devastates", './images/text-inpainting/15.jpg', './images/text-inpainting/15mask.jpg'],
["a board saying session", './images/text-inpainting/16.jpg', './images/text-inpainting/16mask.jpg'],
["rankin dork", './images/text-inpainting/17mask.jpg', './images/text-inpainting/17.jpg'],
["a coin of mem", './images/text-inpainting/18mask.jpg', './images/text-inpainting/18.jpg'],
["a board without text", './images/text-inpainting/19.jpg', './images/text-inpainting/19mask.jpg'],
["a board without text", './images/text-inpainting/20.jpg', './images/text-inpainting/20mask.jpg'],
],
[prompt,orig_image,mask_image],
)
button.click(text_inpainting, inputs=[prompt,orig_image,mask_image,slider_step,slider_guidance,slider_batch,radio], outputs=[output, intermediate_results])
gr.HTML(
"""
<div style="text-align: justify; max-width: 1200px; margin: 20px auto;">
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
<b>Version</b>: 1.0
</h3>
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
<b>Contact</b>:
For help or issues using TextDiffuser, please email Jingye Chen <a href="mailto:[email protected]">([email protected])</a>, Yupan Huang <a href="mailto:[email protected]">([email protected])</a> or submit a GitHub issue. For other communications related to TextDiffuser, please contact Lei Cui <a href="mailto:[email protected]">([email protected])</a> or Furu Wei <a href="mailto:[email protected]">([email protected])</a>.
</h3>
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
<b>Disclaimer</b>:
Please note that the demo is intended for academic and research purposes <b>ONLY</b>. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use.
</h3>
</div>
"""
)
demo.launch() |