File size: 51,838 Bytes
bb90efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
# ------------------------------------------
# TextDiffuser: Diffusion Models as Text Painters
# Paper Link: https://arxiv.org/abs/2305.10855
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser
# Copyright (c) Microsoft Corporation.
# This file provides the inference script.
# ------------------------------------------

import os
import re
import zipfile

if not os.path.exists('textdiffuser-ckpt'):
    os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/textdiffuser-ckpt.zip')
    with zipfile.ZipFile('textdiffuser-ckpt.zip', 'r') as zip_ref:
        zip_ref.extractall('.')

if not os.path.exists('images'):
    os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/images.zip')
    with zipfile.ZipFile('images.zip', 'r') as zip_ref:
        zip_ref.extractall('.')

os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/404.jpg')


if not os.path.exists('Arial.ttf'):
    os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/Arial.ttf')

import cv2
import random
import logging
import argparse
import numpy as np

from pathlib import Path
from tqdm.auto import tqdm
from typing import Optional
from packaging import version
from termcolor import colored
from PIL import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance # import for visualization
from huggingface_hub import HfFolder, Repository, create_repo, whoami

import datasets
from datasets import load_dataset
from datasets import disable_caching

import torch
import torch.utils.checkpoint
import torch.nn.functional as F

import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed

import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel 
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate
from diffusers.utils.import_utils import is_xformers_available

import transformers
from transformers import CLIPTextModel, CLIPTokenizer

from util import segmentation_mask_visualization, make_caption_pil, combine_image, transform_mask_pil, filter_segmentation_mask, inpainting_merge_image
from model.layout_generator import get_layout_from_prompt
from model.text_segmenter.unet import UNet


disable_caching()
check_min_version("0.15.0.dev0")
logger = get_logger(__name__, log_level="INFO")


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path", 
        type=str,
        default='runwayml/stable-diffusion-v1-5', # no need to modify this  
        help="Path to pretrained model or model identifier from huggingface.co/models. Please do not modify this.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--mode",
        type=str,
        default="text-to-image",
        # required=True,
        choices=["text-to-image", "text-to-image-with-template", "text-inpainting"],
        help="Three modes can be used.",
    )
    parser.add_argument(
        "--prompt", 
        type=str,
        default="",
        # required=True,
        help="The text prompts provided by users.",
    )
    parser.add_argument(
        "--template_image", 
        type=str,
        default="",
        help="The template image should be given when using 【text-to-image-with-template】 mode.",
    )
    parser.add_argument(
        "--original_image", 
        type=str,
        default="",
        help="The original image should be given when using 【text-inpainting】 mode.",
    )
    parser.add_argument(
        "--text_mask", 
        type=str,
        default="",
        help="The text mask should be given when using 【text-inpainting】 mode.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--seed", 
        type=int, 
        default=None, 
        help="A seed for reproducible training."
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--classifier_free_scale", 
        type=float,
        default=7.5, # following stable diffusion (https://github.com/CompVis/stable-diffusion)
        help="Classifier free scale following https://arxiv.org/abs/2207.12598.",
    )
    parser.add_argument(
        "--drop_caption", 
        action="store_true", 
        help="Whether to drop captions during training following https://arxiv.org/abs/2207.12598.."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0, 
        help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
    )
    parser.add_argument(
        "--push_to_hub", 
        action="store_true", 
        help="Whether or not to push the model to the Hub."
    )
    parser.add_argument(
        "--hub_token", 
        type=str, 
        default=None, 
        help="The token to use to push to the Model Hub."
    )
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default='fp16',
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to", 
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--local_rank", 
        type=int, 
        default=-1, 
        help="For distributed training: local_rank"
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500, 
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=5,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more docs"
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default='textdiffuser-ckpt/diffusion_backbone', # should be specified during inference
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", 
        action="store_true", 
        help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--font_path", 
        type=str, 
        default='Arial.ttf', 
        help="The path of font for visualization."
    )
    parser.add_argument(
        "--sample_steps", 
        type=int, 
        default=50, # following stable diffusion (https://github.com/CompVis/stable-diffusion)
        help="Diffusion steps for sampling."
    )
    parser.add_argument(
        "--vis_num", 
        type=int, 
        default=4, # please decreases the number if out-of-memory error occurs
        help="Number of images to be sample. Please decrease it when encountering out of memory error."
    )
    parser.add_argument(
        "--binarization", 
        action="store_true", 
        help="Whether to binarize the template image."
    )
    parser.add_argument(
        "--use_pillow_segmentation_mask", 
        type=bool,
        default=True, 
        help="In the 【text-to-image】 mode, please specify whether to use the segmentation masks provided by PILLOW"
    )
    parser.add_argument(
        "--character_segmenter_path", 
        type=str,
        default='textdiffuser-ckpt/text_segmenter.pth',
        help="checkpoint of character-level segmenter"
    )
    args = parser.parse_args()
    
    print(f'{colored("[√]", "green")} Arguments are loaded.')
    print(args)
    
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args



def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"



args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)

print(f'{colored("[√]", "green")} Logging dir is set to {logging_dir}.')

accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)

accelerator = Accelerator(
    gradient_accumulation_steps=1,
    mixed_precision=args.mixed_precision,
    log_with=args.report_to,
    logging_dir=logging_dir,
    project_config=accelerator_project_config,
)

# Make one log on every process with the configuration for debugging.
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_warning()
    diffusers.utils.logging.set_verbosity_info()
else:
    datasets.utils.logging.set_verbosity_error()
    transformers.utils.logging.set_verbosity_error()
    diffusers.utils.logging.set_verbosity_error()

# Handle the repository creation
if accelerator.is_main_process:
    if args.push_to_hub:
        if args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
        else:
            repo_name = args.hub_model_id
        create_repo(repo_name, exist_ok=True, token=args.hub_token)
        repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)

        with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
            if "step_*" not in gitignore:
                gitignore.write("step_*\n")
            if "epoch_*" not in gitignore:
                gitignore.write("epoch_*\n")
    elif args.output_dir is not None:
        os.makedirs(args.output_dir, exist_ok=True)
        print(args.output_dir)

# Load scheduler, tokenizer and models.
tokenizer15 = CLIPTokenizer.from_pretrained(
    'runwayml/stable-diffusion-v1-5', subfolder="tokenizer", revision=args.revision
)
tokenizer21 = CLIPTokenizer.from_pretrained(
    'stabilityai/stable-diffusion-2-1', subfolder="tokenizer", revision=args.revision
)

text_encoder15 = CLIPTextModel.from_pretrained(
    'runwayml/stable-diffusion-v1-5', subfolder="text_encoder", revision=args.revision
)
text_encoder21 = CLIPTextModel.from_pretrained(
    'stabilityai/stable-diffusion-2-1', subfolder="text_encoder", revision=args.revision
)

vae15 = AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="vae", revision=args.revision).cuda()
unet15 = UNet2DConditionModel.from_pretrained(
    './textdiffuser-ckpt/diffusion_backbone_1.5', subfolder="unet", revision=None 
).cuda() 

vae21 = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-2-1', subfolder="vae", revision=args.revision).cuda()
unet21 = UNet2DConditionModel.from_pretrained(
    './textdiffuser-ckpt/diffusion_backbone_2.1', subfolder="unet", revision=None 
).cuda() 

scheduler15 = DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="scheduler") 
scheduler21 = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-2-1', subfolder="scheduler") 



# Freeze vae and text_encoder
vae15.requires_grad_(False)
vae21.requires_grad_(False)
text_encoder15.requires_grad_(False)
text_encoder21.requires_grad_(False)

if args.enable_xformers_memory_efficient_attention:
    if is_xformers_available():
        import xformers

        xformers_version = version.parse(xformers.__version__)
        if xformers_version == version.parse("0.0.16"):
            logger.warn(
                "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
            )
        unet.enable_xformers_memory_efficient_attention()
    else:
        raise ValueError("xformers is not available. Make sure it is installed correctly")

# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        
        for i, model in enumerate(models):
            model.save_pretrained(os.path.join(output_dir, "unet"))

            # make sure to pop weight so that corresponding model is not saved again
            weights.pop()

    def load_model_hook(models, input_dir):
        
        for i in range(len(models)):
            # pop models so that they are not loaded again
            model = models.pop()

            # load diffusers style into model
            load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
            model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)


# setup schedulers                    
# sample_num = args.vis_num

def to_tensor(image):
    if isinstance(image, Image.Image):  
        image = np.array(image)
    elif not isinstance(image, np.ndarray):  
        raise TypeError("Error")

    image = image.astype(np.float32) / 255.0
    image = np.transpose(image, (2, 0, 1))
    tensor = torch.from_numpy(image)

    return tensor


import unicodedata


def full2half(text):
    half = []
    for char in text:
        code = ord(char)
        if code == 0x3000:  
            half.append(chr(0x0020))
        elif 0xFF01 <= code <= 0xFF5E:  
            half.append(chr(code - 0xFEE0))
        else:  
            half.append(char)
    return ''.join(half)

def has_chinese_char(string):
    pattern = re.compile('[\u4e00-\u9fa5]')
    if pattern.search(string):
        return True
    else:
        return False

image_404 = Image.open('404.jpg')

def text_to_image(prompt,slider_step,slider_guidance,slider_batch, version):
    print(f'【version】{version}')
    if version == 'Stable Diffusion v2.1':
        vae = vae21
        unet = unet21
        text_encoder = text_encoder21
        tokenizer = tokenizer21
        scheduler = scheduler21
        slider_batch = min(slider_batch, 1)
        size = 768
    elif version == 'Stable Diffusion v1.5':
        vae = vae15
        unet = unet15
        text_encoder = text_encoder15
        tokenizer = tokenizer15
        scheduler = scheduler15
        size = 512
    else:
        assert False, 'Version Not Found'

    if has_chinese_char(prompt):
        print('trigger')
        return image_404, None

    prompt = full2half(prompt)
    prompt = prompt.replace('"', "'")
    prompt = prompt.replace('‘', "'")
    prompt = prompt.replace('’', "'")
    prompt = prompt.replace('“', "'")
    prompt = prompt.replace('”', "'")
    prompt = re.sub(r"[^a-zA-Z0-9'\" ]+", "", prompt)

    if slider_step>=50:
        slider_step = 50
        
    args.prompt = prompt 
    sample_num = slider_batch
    seed = random.randint(0, 10000000)
    set_seed(seed)
    scheduler.set_timesteps(slider_step) 

    noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda")  # (b, 4, 64, 64)
    input = noise # (b, 4, 64, 64)

    captions = [args.prompt] * sample_num
    captions_nocond = [""] * sample_num
    print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.')
    
    # encode text prompts
    inputs = tokenizer(
        captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.')

    inputs_nocond = tokenizer(
        captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.')

    #### text-to-image ####
    render_image, segmentation_mask_from_pillow = get_layout_from_prompt(args)
    
    segmentation_mask = torch.Tensor(np.array(segmentation_mask_from_pillow)).cuda() # (512, 512)

    segmentation_mask = filter_segmentation_mask(segmentation_mask)
    segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest')
    segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (1, 1, 256, 256)
    print(f'{colored("[√]", "green")} character-level segmentation_mask: {segmentation_mask.shape}.')
    
    feature_mask = torch.ones(sample_num, 1, size//8, size//8).to('cuda') # (b, 1, 64, 64)
    masked_image = torch.zeros(sample_num, 3, size, size).to('cuda') # (b, 3, 512, 512)
    masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64)
    masked_feature = masked_feature * vae.config.scaling_factor 
    print(f'{colored("[√]", "green")} feature_mask: {feature_mask.shape}.')
    print(f'{colored("[√]", "green")} masked_feature: {masked_feature.shape}.')

    # diffusion process
    intermediate_images = []
    for t in tqdm(scheduler.timesteps):
        with torch.no_grad():
            noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64     
            prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample 
            input = prev_noisy_sample
            intermediate_images.append(prev_noisy_sample)
            
    # decode and visualization
    input = 1 / vae.config.scaling_factor * input 
    sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512)

    image_pil = render_image.resize((size,size))
    segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy()
    character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((size,size))
    character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask)
    character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size))
    caption_pil = make_caption_pil(args.font_path, captions)
    
    # save pred_img
    pred_image_list = []
    for image in sample_images.float():
        image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
        image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
        image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
        pred_image_list.append(image)
        
    blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil)
    
    intermediate_result = Image.new('RGB', (size*3, size))
    intermediate_result.paste(image_pil, (0, 0))
    intermediate_result.paste(character_mask_pil, (size, 0))
    intermediate_result.paste(character_mask_highlight_pil, (size*2, 0))

    return blank_pil, intermediate_result


# load character-level segmenter
segmenter = UNet(3, 96, True).cuda()
segmenter = torch.nn.DataParallel(segmenter)
segmenter.load_state_dict(torch.load(args.character_segmenter_path))
segmenter.eval()
print(f'{colored("[√]", "green")} Text segmenter is successfully loaded.')




def text_to_image_with_template(prompt,template_image,slider_step,slider_guidance,slider_batch, binary, version):

    if version == 'Stable Diffusion v2.1':
        vae = vae21
        unet = unet21
        text_encoder = text_encoder21
        tokenizer = tokenizer21
        scheduler = scheduler21
        slider_batch = min(slider_batch, 1)
        size = 768
    elif version == 'Stable Diffusion v1.5':
        vae = vae15
        unet = unet15
        text_encoder = text_encoder15
        tokenizer = tokenizer15
        scheduler = scheduler15
        size = 512
    else:
        assert False, 'Version Not Found'

    if has_chinese_char(prompt):
        print('trigger')
        return image_404, None
    
    if slider_step>=50:
        slider_step = 50
        
    orig_template_image = template_image.resize((size,size)).convert('RGB')
    args.prompt = prompt 
    sample_num = slider_batch
    # If passed along, set the training seed now.
    # seed = slider_seed
    seed = random.randint(0, 10000000)
    set_seed(seed)
    scheduler.set_timesteps(slider_step) 

    noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda")  # (b, 4, 64, 64)
    input = noise # (b, 4, 64, 64)

    captions = [args.prompt] * sample_num
    captions_nocond = [""] * sample_num
    print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.')
    
    # encode text prompts
    inputs = tokenizer(
        captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.')

    inputs_nocond = tokenizer(
        captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.')

    #### text-to-image-with-template ####
    template_image = template_image.resize((256,256)).convert('RGB')
    
    # whether binarization is needed
    print(f'{colored("[Warning]", "red")} args.binarization is set to {binary}. You may need it when using handwritten images as templates.')
        
    if binary:
        gray = ImageOps.grayscale(template_image)
        binary = gray.point(lambda x: 255 if x > 96 else 0, '1')
        template_image = binary.convert('RGB')

    # to_tensor = transforms.ToTensor()
    image_tensor = to_tensor(template_image).unsqueeze(0).cuda().sub_(0.5).div_(0.5) # (b, 3, 256, 256)
            
    with torch.no_grad():
        segmentation_mask = segmenter(image_tensor) # (b, 96, 256, 256)
    segmentation_mask = segmentation_mask.max(1)[1].squeeze(0) # (256, 256)
    segmentation_mask = filter_segmentation_mask(segmentation_mask) # (256, 256)
    
    segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest') # (b, 1, 256, 256)
    segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (b, 1, 256, 256)
    print(f'{colored("[√]", "green")} Character-level segmentation_mask: {segmentation_mask.shape}.')
    
    feature_mask = torch.ones(sample_num, 1, size//8, size//8).to('cuda') # (b, 1, 64, 64)
    masked_image = torch.zeros(sample_num, 3, size, size).to('cuda') # (b, 3, 512, 512)
    masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64)
    masked_feature = masked_feature * vae.config.scaling_factor # (b, 4, 64, 64)

    # diffusion process
    intermediate_images = []
    for t in tqdm(scheduler.timesteps):
        with torch.no_grad():
            noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64     
            prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample 
            input = prev_noisy_sample
            intermediate_images.append(prev_noisy_sample)
            
    # decode and visualization
    input = 1 / vae.config.scaling_factor * input 
    sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512)

    image_pil = None
    segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy()
    character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((size,size))
    character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask)
    character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size))
    caption_pil = make_caption_pil(args.font_path, captions)
    
    # save pred_img
    pred_image_list = []
    for image in sample_images.float():
        image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
        image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
        image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
        pred_image_list.append(image)
        
    blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil)
    
    intermediate_result = Image.new('RGB', (size*3, size))
    intermediate_result.paste(orig_template_image, (0, 0))
    intermediate_result.paste(character_mask_pil, (size, 0))
    intermediate_result.paste(character_mask_highlight_pil, (size*2, 0))
    
    return blank_pil, intermediate_result


def text_inpainting(prompt,orig_image,mask_image,slider_step,slider_guidance,slider_batch, version):

    if version == 'Stable Diffusion v2.1':
        vae = vae21
        unet = unet21
        text_encoder = text_encoder21
        tokenizer = tokenizer21
        scheduler = scheduler21
        slider_batch = min(slider_batch, 1)
        size = 768
    elif version == 'Stable Diffusion v1.5':
        vae = vae15
        unet = unet15
        text_encoder = text_encoder15
        tokenizer = tokenizer15
        scheduler = scheduler15
        size = 512
    else:
        assert False, 'Version Not Found'

    if has_chinese_char(prompt):
        print('trigger')
        return image_404, None
        
    if slider_step>=50:
        slider_step = 50
        
    args.prompt = prompt 
    sample_num = slider_batch
    # If passed along, set the training seed now.
    # seed = slider_seed
    seed = random.randint(0, 10000000)
    set_seed(seed)
    scheduler.set_timesteps(slider_step) 

    noise = torch.randn((sample_num, 4, size//8, size//8)).to("cuda")  # (b, 4, 64, 64)
    input = noise # (b, 4, 64, 64)

    captions = [args.prompt] * sample_num
    captions_nocond = [""] * sample_num
    print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.')
    
    # encode text prompts
    inputs = tokenizer(
        captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.')

    inputs_nocond = tokenizer(
        captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.')

    mask_image = cv2.resize(mask_image, (size,size))
    # mask_image = mask_image.resize((512,512)).convert('RGB')
    text_mask = np.array(mask_image)
    threshold = 128  
    _, text_mask = cv2.threshold(text_mask, threshold, 255, cv2.THRESH_BINARY)
    text_mask = Image.fromarray(text_mask).convert('RGB').resize((256,256))
    text_mask.save('text_mask.png') 
    text_mask_tensor = to_tensor(text_mask).unsqueeze(0).cuda().sub_(0.5).div_(0.5)
    with torch.no_grad():
        segmentation_mask = segmenter(text_mask_tensor)
        
    segmentation_mask = segmentation_mask.max(1)[1].squeeze(0)
    segmentation_mask = filter_segmentation_mask(segmentation_mask)
    segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(size//2, size//2), mode='nearest')

    image_mask = transform_mask_pil(mask_image, size) 
    image_mask = torch.from_numpy(image_mask).cuda().unsqueeze(0).unsqueeze(0) 

    orig_image = orig_image.convert('RGB').resize((size,size))
    image = orig_image
    image_tensor = to_tensor(image).unsqueeze(0).cuda().sub_(0.5).div_(0.5)   
    masked_image = image_tensor * (1-image_mask)
    masked_feature = vae.encode(masked_image).latent_dist.sample().repeat(sample_num, 1, 1, 1)
    masked_feature = masked_feature * vae.config.scaling_factor
    
    image_mask = torch.nn.functional.interpolate(image_mask, size=(size//2, size//2), mode='nearest').repeat(sample_num, 1, 1, 1) 
    segmentation_mask = segmentation_mask * image_mask 
    feature_mask = torch.nn.functional.interpolate(image_mask, size=(size//8, size//8), mode='nearest')

    # diffusion process
    intermediate_images = []
    for t in tqdm(scheduler.timesteps):
        with torch.no_grad():
            noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64     
            prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample 
            input = prev_noisy_sample
            intermediate_images.append(prev_noisy_sample)
            
    # decode and visualization
    input = 1 / vae.config.scaling_factor * input 
    sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512)

    image_pil = None
    segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy()
    character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((512,512))
    character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask)
    character_mask_highlight_pil = character_mask_highlight_pil.resize((size, size))
    caption_pil = make_caption_pil(args.font_path, captions)
    
    # save pred_img
    pred_image_list = []
    for image in sample_images.float():
        image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
        image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
        image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
        
        # need to merge
        
        # image = inpainting_merge_image(orig_image, Image.fromarray(mask_image).convert('L'), image)

        pred_image_list.append(image)
    
    character_mask_pil.save('character_mask_pil.png')
    character_mask_highlight_pil.save('character_mask_highlight_pil.png')
    
        
    blank_pil = combine_image(args, size, None, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil)


    background = orig_image.resize((512, 512))
    alpha = Image.new('L', background.size, int(255 * 0.2))
    background.putalpha(alpha)
    # foreground
    foreground = Image.fromarray(mask_image).convert('L').resize((512, 512))
    threshold = 200
    alpha = foreground.point(lambda x: 0 if x > threshold else 255, '1')
    foreground.putalpha(alpha)
    merge_image = Image.alpha_composite(foreground.convert('RGBA'), background.convert('RGBA')).convert('RGB')

    intermediate_result = Image.new('RGB', (512*3, 512))
    intermediate_result.paste(merge_image, (0, 0))
    intermediate_result.paste(character_mask_pil, (512, 0))
    intermediate_result.paste(character_mask_highlight_pil, (512*2, 0))
    
    return blank_pil, intermediate_result
    
import gradio as gr
    
with gr.Blocks() as demo:

    gr.HTML(
        """
        <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
        <h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
            TextDiffuser: Diffusion Models as Text Painters
        </h1>        
        <h3 style="font-weight: 450; font-size: 1rem; margin: 0rem"> 
        [<a href="https://arxiv.org/abs/2305.10855" style="color:blue;">arXiv</a>] 
        [<a href="https://github.com/microsoft/unilm/tree/master/textdiffuser" style="color:blue;">Code</a>]
        [<a href="https://jingyechen.github.io/textdiffuser/" style="color:blue;">ProjectPage</a>]
        </h3> 
        <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
        We propose <b>TextDiffuser</b>, a flexible and controllable framework to generate images with visually appealing text that is coherent with backgrounds. 
        Main features include: (a) <b><font color="#A52A2A">Text-to-Image</font></b>: The user provides a prompt and encloses the keywords with single quotes (e.g., a text image of ‘hello’). The model first determines the layout of the keywords and then draws the image based on the layout and prompt. (b) <b><font color="#A52A2A">Text-to-Image with Templates</font></b>: The user provides a prompt and a template image containing text, which can be a printed, handwritten, or scene text image. These template images can be used to determine the layout of the characters. (c) <b><font color="#A52A2A">Text Inpainting</font></b>: The user provides an image and specifies the region to be modified along with the desired text content. The model is able to modify the original text or add text to areas without text.
        </h2>
        <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
        🔥 <b>News</b>: We further trained TextDiffuser based on <b>Stable Diffusion v2.1</b> pre-trained model, enlarging the resolution from 512x512 to <b>768x768</b> to enhance the legibility of small text. Additionally, we fine-tuned the model with images with <b>high aesthetical score</b>, enabling generating images with richer details.
        </h2>

        
        <img src="file/images/huggingface_blank.jpg" alt="textdiffuser">        
        </div>
        """)

    with gr.Tab("Text-to-Image"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt = gr.Textbox(label="Input your prompt here. Please enclose keywords with 'single quotes', you may refer to the examples below. The current version only supports input in English characters.", placeholder="Placeholder 'Team' hat")
                radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v1.5")
                slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
                slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
                slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
                # slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
                button = gr.Button("Generate")
                            
            with gr.Column(scale=1):
                output = gr.Image(label='Generated image')
                
                with gr.Accordion("Intermediate results", open=False):
                    gr.Markdown("Layout, segmentation mask, and details of segmentation mask from left to right.")
                    intermediate_results = gr.Image(label='')
        
        gr.Markdown("## Prompt Examples")
        gr.Examples(
            [
                ["Distinguished poster of 'SPIDERMAN'. Trending on ArtStation and Pixiv. A vibrant digital oil painting. A highly detailed fantasy character illustration by Wayne Reynolds and Charles Monet and Gustave Dore and Carl Critchlow and Bram Sels"],
                ["A detailed portrait of a fox guardian with a shield with 'Kung Fu' written on it, by victo ngai and justin gerard, digital art, realistic painting, very detailed, fantasy, high definition, cinematic light, dnd, trending on artstation"],
                ["portrait of a 'dragon', concept art, sumi - e style, intricate linework, green smoke, artstation, trending, highly detailed, smooth, focus, art by yoji shinkawa,"],
                ["elderly woman dressed in extremely colorful clothes with many strange patterns posing for a high fashion photoshoot of 'FASHION', haute couture, golden hour, artstation, by J. C. Leyendecker and Peter Paul Rubens"],
                ["epic digital art of a luxury yacht named 'Time Machine' driving through very dark hard edged city towers from tron movie, faint tall mountains in background, wlop, pixiv"],
                ["A poster of 'Adventurer'.  A beautiful so tall boy with big eyes and small nose is in the jungle, he wears normal clothes and shows his full length, which we see from the front, unreal engine, cozy indoor lighting, artstation, detailed"],
                ["A poster of 'AI BABY'. Cute and adorable cartoon it baby, fantasy, dreamlike, surrealism, super cute, trending on artstation"],
                ["'Team' hat"],
                ["Thanksgiving 'Fam' Mens T Shirt"],
                ["A storefront with 'Hello World' written on it."],
                ["A poster titled 'Quails of North America', showing different kinds of quails."],
                ["A storefront with 'Deep Learning' written on it."],
                ["An antique bottle labeled 'Energy Tonic'"],
                ["A TV show poster titled 'Tango argentino'"],
                ["A TV show poster with logo 'The Dry' on it"],
                ["Stupid 'History' eBook Tales of Stupidity Strangeness"],
                ["Photos of 'Sampa Hostel'"],
                ["A large recipe book titled 'Recipes from Peru'."],
                ["New York Skyline with 'Diffusion' written with fireworks on the sky"],
                ["Books with the word 'Science' printed on them"],
                ["A globe with the words 'Planet Earth' written in bold letters with continents in bright colors"],
                ["A logo for the company 'EcoGrow', where the letters look like plants"],
            ],
            prompt,
            examples_per_page=100
        )
                    
        button.click(text_to_image, inputs=[prompt,slider_step,slider_guidance,slider_batch,radio], outputs=[output,intermediate_results])
        
    with gr.Tab("Text-to-Image-with-Template"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt = gr.Textbox(label='Input your prompt here.')
                template_image = gr.Image(label='Template image', type="pil")
                radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v1.5")
                slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
                slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
                slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
                # binary = gr.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?")
                binary = gr.Checkbox(label="Binarization", bool=True, info="Whether to binarize the template image? You may need it when using handwritten images as templates.")
                button = gr.Button("Generate")
                    
            with gr.Column(scale=1):
                output = gr.Image(label='Generated image')
                
                with gr.Accordion("Intermediate results", open=False):
                    gr.Markdown("Template image, segmentation mask, and details of segmentation mask from left to right.")
                    intermediate_results = gr.Image(label='')

        gr.Markdown("## Prompt and Template-Image Examples")
        gr.Examples(
            [
                ["summer garden, artwork, highly detailed, sharp focus, realist, digital painting, artstation, concept art, art by jay oh, greg rutkowski, wlop", './images/text-to-image-with-template/6.jpg', False], 
                ["a hand-drawn blueprint for a time machine with the caption 'Time traveling device'", './images/text-to-image-with-template/5.jpg', False], 
                ["a book called summer vibe written by diffusion model", './images/text-to-image-with-template/7.jpg', False], 
                ["a work company", './images/text-to-image-with-template/8.jpg', False], 
                ["a book of AI in next century written by AI robot ", './images/text-to-image-with-template/9.jpg', False], 
                ["A board saying having a dog named shark at the beach was a mistake", './images/text-to-image-with-template/1.jpg', False], 
                ["an elephant holds a newspaper that is written elephant take over the world", './images/text-to-image-with-template/2.jpg', False], 
                ["a mouse with a flashlight saying i am afraid of the dark", './images/text-to-image-with-template/4.jpg', False], 
                ["a birthday cake of happy birthday to xyz", './images/text-to-image-with-template/10.jpg', False], 
                ["a poster of monkey music festival", './images/text-to-image-with-template/11.jpg', False], 
                ["a meme of are you kidding", './images/text-to-image-with-template/12.jpg', False], 
                ["a 3d model of a 1980s-style computer with the text my old habit on the screen", './images/text-to-image-with-template/13.jpg', True], 
                ["a board of hello world", './images/text-to-image-with-template/15.jpg', True], 
                ["a microsoft bag", './images/text-to-image-with-template/16.jpg', True], 
                ["a dog holds a paper saying please adopt me", './images/text-to-image-with-template/17.jpg', False], 
                ["a hello world banner", './images/text-to-image-with-template/18.jpg', False], 
                ["a stop pizza", './images/text-to-image-with-template/19.jpg', False], 
                ["a dress with text do not read the next sentence", './images/text-to-image-with-template/20.jpg', False], 
            ],
            [prompt,template_image, binary],
            examples_per_page=100
        )

        button.click(text_to_image_with_template, inputs=[prompt,template_image,slider_step,slider_guidance,slider_batch,binary,radio], outputs=[output,intermediate_results])
        
    with gr.Tab("Text-Inpainting"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt = gr.Textbox(label='Input your prompt here.')
                with gr.Row():
                    orig_image = gr.Image(label='Original image', type="pil")
                    mask_image = gr.Image(label='Mask image', type="numpy")
                radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v1.5")
                slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
                slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
                slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
                button = gr.Button("Generate")
            with gr.Column(scale=1):
                output = gr.Image(label='Generated image')
                with gr.Accordion("Intermediate results", open=False):
                    gr.Markdown("Masked image, segmentation mask, and details of segmentation mask from left to right.")
                    intermediate_results = gr.Image(label='')
                
        gr.Markdown("## Prompt, Original Image, and Mask Examples")
        gr.Examples(
            [
                ["eye on security protection", './images/text-inpainting/1.jpg', './images/text-inpainting/1mask.jpg'],
                ["a logo of poppins", './images/text-inpainting/2.jpg', './images/text-inpainting/2mask.jpg'],
                ["tips for middle space living ", './images/text-inpainting/3.jpg', './images/text-inpainting/3mask.jpg'],
                ["george is a proud big sister", './images/text-inpainting/5.jpg', './images/text-inpainting/5mask.jpg'],
                ["we are the great people", './images/text-inpainting/6.jpg', './images/text-inpainting/6mask.jpg'],
                ["tech house interesting terrace party", './images/text-inpainting/7.jpg', './images/text-inpainting/7mask.jpg'],
                ["2023", './images/text-inpainting/8.jpg', './images/text-inpainting/8mask.jpg'],
                ["wear protective equipment necessary", './images/text-inpainting/9.jpg', './images/text-inpainting/9mask.jpg'],
                ["a good day in the hometown", './images/text-inpainting/10.jpg', './images/text-inpainting/10mask.jpg'],
                ["a boy paints good morning on a board", './images/text-inpainting/11.jpg', './images/text-inpainting/11mask.jpg'],
                ["the word my gift on a basketball", './images/text-inpainting/13.jpg', './images/text-inpainting/13mask.jpg'],
                ["a logo of mono", './images/text-inpainting/14.jpg', './images/text-inpainting/14mask.jpg'],
                ["a board saying assyrian on unflagging fry devastates", './images/text-inpainting/15.jpg', './images/text-inpainting/15mask.jpg'],
                ["a board saying session", './images/text-inpainting/16.jpg', './images/text-inpainting/16mask.jpg'],
                ["rankin dork", './images/text-inpainting/17mask.jpg', './images/text-inpainting/17.jpg'],
                ["a coin of mem", './images/text-inpainting/18mask.jpg', './images/text-inpainting/18.jpg'],
                ["a board without text", './images/text-inpainting/19.jpg', './images/text-inpainting/19mask.jpg'],
                ["a board without text", './images/text-inpainting/20.jpg', './images/text-inpainting/20mask.jpg'],

            ],
            [prompt,orig_image,mask_image],
        )
                
                
        button.click(text_inpainting, inputs=[prompt,orig_image,mask_image,slider_step,slider_guidance,slider_batch,radio], outputs=[output, intermediate_results])



    gr.HTML(
        """
        <div style="text-align: justify; max-width: 1200px; margin: 20px auto;">
        <h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
        <b>Version</b>: 1.0
        </h3>
        <h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
        <b>Contact</b>: 
        For help or issues using TextDiffuser, please email Jingye Chen <a href="mailto:[email protected]">([email protected])</a>, Yupan Huang <a href="mailto:[email protected]">([email protected])</a> or submit a GitHub issue. For other communications related to TextDiffuser, please contact Lei Cui <a href="mailto:[email protected]">([email protected])</a> or Furu Wei <a href="mailto:[email protected]">([email protected])</a>.
        </h3>
        <h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
        <b>Disclaimer</b>: 
        Please note that the demo is intended for academic and research purposes <b>ONLY</b>. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use.
        </h3>
        </div>
        """
    )

demo.launch()