|
|
|
|
|
import os |
|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torchvision.transforms.functional as TF |
|
from diffusers import ( |
|
AutoencoderKL, |
|
EulerAncestralDiscreteScheduler, |
|
StableDiffusionXLAdapterPipeline, |
|
T2IAdapter, |
|
) |
|
|
|
DESCRIPTION = '''# Doodly - T2I-Adapter-SDXL **Sketch** |
|
To try out all the [6 T2I-Adapter](https://huggingface.co/collections/TencentARC/t2i-adapter-sdxl-64fac9cbf393f30370eeb02f) released for SDXL, [click here](https://huggingface.co/spaces/TencentARC/T2I-Adapter-SDXL) |
|
''' |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
style_list = [ |
|
{ |
|
"name": "(No style)", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Digital Art", |
|
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", |
|
"negative_prompt": "photo, photorealistic, realism, ugly", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Pixel art", |
|
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", |
|
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Manga", |
|
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", |
|
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "(No style)" |
|
|
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
if torch.cuda.is_available(): |
|
model_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
adapter = T2IAdapter.from_pretrained( |
|
"TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( |
|
model_id, |
|
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16), |
|
adapter=adapter, |
|
scheduler=scheduler, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
pipe.to(device) |
|
else: |
|
pipe = None |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
def run( |
|
image: PIL.Image.Image, |
|
prompt: str, |
|
negative_prompt: str, |
|
style_name: str = DEFAULT_STYLE_NAME, |
|
num_steps: int = 25, |
|
guidance_scale: float = 5, |
|
adapter_conditioning_scale: float = 0.8, |
|
adapter_conditioning_factor: float = 0.8, |
|
seed: int = 0, |
|
progress=gr.Progress(track_tqdm=True), |
|
) -> PIL.Image.Image: |
|
image = image.convert("RGB") |
|
image = TF.to_tensor(image) > 0.5 |
|
image = TF.to_pil_image(image.to(torch.float32)) |
|
|
|
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
out = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
adapter_conditioning_scale=adapter_conditioning_scale, |
|
adapter_conditioning_factor=adapter_conditioning_factor, |
|
).images[0] |
|
return out |
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION, elem_id="description") |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
image = gr.Image( |
|
source="canvas", |
|
tool="sketch", |
|
type="pil", |
|
image_mode="L", |
|
invert_colors=True, |
|
shape=(1024, 1024), |
|
brush_radius=4, |
|
height=440, |
|
) |
|
prompt = gr.Textbox(label="Prompt") |
|
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", |
|
) |
|
num_steps = gr.Slider( |
|
label="Number of steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=25, |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.1, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5, |
|
) |
|
adapter_conditioning_scale = gr.Slider( |
|
label="Adapter conditioning scale", |
|
minimum=0.5, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
) |
|
adapter_conditioning_factor = gr.Slider( |
|
label="Adapter conditioning factor", |
|
info="Fraction of timesteps for which adapter should be applied", |
|
minimum=0.5, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Column(): |
|
result = gr.Image(label="Result", height=400) |
|
|
|
inputs = [ |
|
image, |
|
prompt, |
|
negative_prompt, |
|
style, |
|
num_steps, |
|
guidance_scale, |
|
adapter_conditioning_scale, |
|
adapter_conditioning_factor, |
|
seed, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
negative_prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|