Paolo-Fraccaro commited on
Commit
5af1287
1 Parent(s): b2fefdb
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Bolivia_432776_S2Hand.tif filter=lfs diff=lfs merge=lfs -text
37
+ Spain_7370579_S2Hand.tif filter=lfs diff=lfs merge=lfs -text
38
+ USA_430764_S2Hand.tif filter=lfs diff=lfs merge=lfs -text
Bolivia_432776_S2Hand.tif ADDED

Git LFS Details

  • SHA256: 75d815071750e2c57cea204770cb7e7c7dfda7311f67e9d5b180771ef68b9fe9
  • Pointer size: 132 Bytes
  • Size of remote file: 2.16 MB
Dockerfile ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM ubuntu:18.04
2
+
3
+
4
+ RUN apt-get update && apt-get install --no-install-recommends -y \
5
+ build-essential \
6
+ python3.8 \
7
+ python3-pip \
8
+ python3-setuptools \
9
+ git \
10
+ wget \
11
+ && apt-get clean && rm -rf /var/lib/apt/lists/*
12
+
13
+ RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
14
+
15
+ WORKDIR /code
16
+
17
+ # add conda
18
+ RUN wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -P /code/
19
+ RUN chmod 777 /code/Miniconda3-latest-Linux-x86_64.sh
20
+ RUN /code/Miniconda3-latest-Linux-x86_64.sh -b -p /code/miniconda
21
+ ENV PATH="/code/miniconda/bin:${PATH}"
22
+
23
+ RUN groupadd miniconda
24
+ RUN chgrp -R miniconda /code/miniconda/
25
+ RUN chmod 770 -R /code/miniconda/
26
+
27
+
28
+ # Set up a new user named "user" with user ID 1000
29
+ RUN useradd -m -u 1000 user
30
+ RUN adduser user miniconda
31
+
32
+ # Switch to the "user" user
33
+ USER user
34
+ # Set home to the user's home directory
35
+ ENV HOME=/home/user \
36
+ PATH=/home/user/.local/bin:$PATH \
37
+ PYTHONPATH=$HOME/app \
38
+ PYTHONUNBUFFERED=1 \
39
+ GRADIO_ALLOW_FLAGGING=never \
40
+ GRADIO_NUM_PORTS=1 \
41
+ GRADIO_SERVER_NAME=0.0.0.0 \
42
+ GRADIO_THEME=huggingface \
43
+ SYSTEM=spaces
44
+
45
+ RUN conda install python=3.8
46
+
47
+ RUN pip3 install setuptools-rust
48
+
49
+ RUN conda install pillow -y
50
+
51
+ RUN pip3 install torch==1.11.0+cu115 torchvision==0.12.0+cu115 --extra-index-url https://download.pytorch.org/whl/cu115
52
+
53
+ RUN pip3 install openmim
54
+
55
+ RUN conda install -c conda-forge gradio -y
56
+
57
+ WORKDIR /home/user
58
+
59
+ RUN --mount=type=secret,id=git_token,mode=0444,required=true \
60
+ git clone --branch mmseg-only https://$(cat /run/secrets/git_token)@github.com/NASA-IMPACT/hls-foundation-os.git
61
+
62
+
63
+ WORKDIR hls-foundation-os
64
+
65
+ RUN pip3 install -e .
66
+
67
+ RUN mim install mmcv-full==1.6.2 -f https://download.openmmlab.com/mmcv/dist/11.5/1.11.0/index.html
68
+
69
+ RUN pip3 install rasterio scikit-image
70
+ # Set the working directory to the user's home directory
71
+ WORKDIR $HOME/app
72
+
73
+ ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/code/miniconda/lib"
74
+
75
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
76
+ COPY --chown=user . $HOME/app
77
+
78
+ CMD ["python3", "app.py"]
Spain_7370579_S2Hand.tif ADDED

Git LFS Details

  • SHA256: 16e997e6a7159fa11160faf00591da763eb37ac82faf806f7fe733991944a048
  • Pointer size: 132 Bytes
  • Size of remote file: 2.32 MB
USA_430764_S2Hand.tif ADDED

Git LFS Details

  • SHA256: 385418e105dc1068a7d78585e4395bcdc134e7b0d092ba942867ef74393d8d12
  • Pointer size: 132 Bytes
  • Size of remote file: 2.2 MB
app.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######### pull files
2
+ import os
3
+ from huggingface_hub import hf_hub_download
4
+ config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-sen1floods11", filename="sen1floods11_Prithvi_100M.py", token=os.environ.get("token"))
5
+ ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-sen1floods11", filename='sen1floods11_Prithvi_100M.pth', token=os.environ.get("token"))
6
+ ##########
7
+
8
+
9
+ import argparse
10
+ from mmcv import Config
11
+
12
+ from mmseg.models import build_segmentor
13
+
14
+ from mmseg.datasets.pipelines import Compose, LoadImageFromFile
15
+
16
+ import rasterio
17
+ import torch
18
+
19
+ from mmseg.apis import init_segmentor
20
+
21
+ from mmcv.parallel import collate, scatter
22
+
23
+ import numpy as np
24
+ import glob
25
+ import os
26
+
27
+ import time
28
+
29
+ import numpy as np
30
+ import gradio as gr
31
+ from functools import partial
32
+
33
+ import pdb
34
+
35
+ import matplotlib.pyplot as plt
36
+
37
+
38
+ def open_tiff(fname):
39
+
40
+ with rasterio.open(fname, "r") as src:
41
+
42
+ data = src.read()
43
+
44
+ return data
45
+
46
+ def write_tiff(img_wrt, filename, metadata):
47
+
48
+ """
49
+ It writes a raster image to file.
50
+
51
+ :param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
52
+ :param filename: file path to the output file
53
+ :param metadata: metadata to use to write the raster to disk
54
+ :return:
55
+ """
56
+
57
+ with rasterio.open(filename, "w", **metadata) as dest:
58
+
59
+ if len(img_wrt.shape) == 2:
60
+
61
+ img_wrt = img_wrt[None]
62
+
63
+ for i in range(img_wrt.shape[0]):
64
+ dest.write(img_wrt[i, :, :], i + 1)
65
+
66
+ return filename
67
+
68
+
69
+ def get_meta(fname):
70
+
71
+ with rasterio.open(fname, "r") as src:
72
+
73
+ meta = src.meta
74
+
75
+ return meta
76
+
77
+ def preprocess_example(example_list):
78
+
79
+ example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
80
+
81
+ return example_list
82
+
83
+
84
+ def inference_segmentor(model, imgs, custom_test_pipeline=None):
85
+ """Inference image(s) with the segmentor.
86
+
87
+ Args:
88
+ model (nn.Module): The loaded segmentor.
89
+ imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
90
+ images.
91
+
92
+ Returns:
93
+ (list[Tensor]): The segmentation result.
94
+ """
95
+ cfg = model.cfg
96
+ device = next(model.parameters()).device # model device
97
+ # build the data pipeline
98
+ test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
99
+ test_pipeline = Compose(test_pipeline)
100
+ # prepare data
101
+ data = []
102
+ imgs = imgs if isinstance(imgs, list) else [imgs]
103
+ for img in imgs:
104
+ img_data = {'img_info': {'filename': img}}
105
+ img_data = test_pipeline(img_data)
106
+ data.append(img_data)
107
+ # print(data.shape)
108
+
109
+ data = collate(data, samples_per_gpu=len(imgs))
110
+ if next(model.parameters()).is_cuda:
111
+ # data = collate(data, samples_per_gpu=len(imgs))
112
+ # scatter to specified GPU
113
+ data = scatter(data, [device])[0]
114
+ else:
115
+ # img_metas = scatter(data['img_metas'],'cpu')
116
+ # data['img_metas'] = [i.data[0] for i in data['img_metas']]
117
+
118
+ img_metas = data['img_metas'].data[0]
119
+ img = data['img']
120
+ data = {'img': img, 'img_metas':img_metas}
121
+
122
+ with torch.no_grad():
123
+ result = model(return_loss=False, rescale=True, **data)
124
+ return result
125
+
126
+
127
+ def inference_on_file(target_image, model, custom_test_pipeline):
128
+
129
+ target_image = target_image.name
130
+ # print(type(target_image))
131
+
132
+ # output_image = target_image.replace('.tif', '_pred.tif')
133
+ time_taken=-1
134
+
135
+ st = time.time()
136
+ print('Running inference...')
137
+ result = inference_segmentor(model, target_image, custom_test_pipeline)
138
+ print("Output has shape: " + str(result[0].shape))
139
+
140
+ ##### get metadata mask
141
+ mask = open_tiff(target_image)
142
+ # rgb = mask[[2, 1, 0], :, :].transpose((1,2,0))
143
+ rgb = mask[[5, 3, 2], :, :].transpose((1,2,0))
144
+ meta = get_meta(target_image)
145
+ mask = np.where(mask == meta['nodata'], 1, 0)
146
+ mask = np.max(mask, axis=0)[None]
147
+
148
+ result[0] = np.where(mask == 1, -1, result[0])
149
+
150
+ ##### Save file to disk
151
+ meta["count"] = 1
152
+ meta["dtype"] = "int16"
153
+ meta["compress"] = "lzw"
154
+ meta["nodata"] = -1
155
+ print('Saving output...')
156
+ # write_tiff(result[0], output_image, meta)
157
+ et = time.time()
158
+ time_taken = np.round(et - st, 1)
159
+ print(f'Inference completed in {str(time_taken)} seconds')
160
+
161
+ return rgb, result[0][0]*255
162
+
163
+ def process_test_pipeline(custom_test_pipeline, bands=None):
164
+
165
+ # change extracted bands if necessary
166
+ if bands is not None:
167
+
168
+ extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
169
+
170
+ if len(extract_index) > 0:
171
+
172
+ custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
173
+
174
+ collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
175
+
176
+ # adapt collected keys if necessary
177
+ if len(collect_index) > 0:
178
+
179
+ keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
180
+ custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
181
+
182
+ return custom_test_pipeline
183
+
184
+ config = Config.fromfile(config_path)
185
+ config.model.backbone.pretrained=None
186
+ model = init_segmentor(config, ckpt, device='cpu')
187
+ custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
188
+
189
+ func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
190
+
191
+ with gr.Blocks() as demo:
192
+
193
+ gr.Markdown(value='# Prithvi burn scars detection')
194
+ gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to detect water at a higher resolution than it was trained on (i.e. 10m versus 30m) using Sentinel 2 imagery from on the [sen1floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11). More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-sen1floods11).\n
195
+ The user needs to provide an HLS geotiff image, including the following channels in reflectance units multiplied by 10,000 (e.g. to save on space): Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
196
+ ''')
197
+ with gr.Row():
198
+ with gr.Column():
199
+ inp = gr.File()
200
+ btn = gr.Button("Submit")
201
+
202
+ with gr.Row():
203
+ gr.Markdown(value='### Input RGB')
204
+ gr.Markdown(value='### Model prediction (Black: Land; White: Water)')
205
+
206
+ with gr.Row():
207
+ out1=gr.Image(image_mode='RGB')
208
+ out2 = gr.Image(image_mode='L')
209
+
210
+ btn.click(fn=func, inputs=inp, outputs=[out1, out2])
211
+
212
+ with gr.Row():
213
+ gr.Examples(examples=["subsetted_512x512_HLS.S30.T10TGS.2020245.v1.4_merged.tif",
214
+ "subsetted_512x512_HLS.S30.T10TGS.2018285.v1.4_merged.tif",
215
+ "subsetted_512x512_HLS.S30.T10UGV.2020218.v1.4_merged.tif"],
216
+ inputs=inp,
217
+ outputs=[out1, out2],
218
+ preprocess=preprocess_example,
219
+ fn=func,
220
+ cache_examples=True,
221
+ )
222
+
223
+ demo.launch()