|
|
|
from huggingface_hub import hf_hub_download |
|
import os |
|
yaml_file_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename="Prithvi_100M_config.yaml", token=os.environ.get("token")) |
|
checkpoint=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename='Prithvi_100M.pt', token=os.environ.get("token")) |
|
model_def=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename='Prithvi.py', token=os.environ.get("token")) |
|
os.system(f'cp {model_def} .') |
|
|
|
import argparse |
|
import functools |
|
import os |
|
from typing import List |
|
|
|
import numpy as np |
|
import rasterio |
|
import torch |
|
import yaml |
|
from einops import rearrange |
|
|
|
from Prithvi import MaskedAutoencoderViT |
|
import gradio as gr |
|
from functools import partial |
|
|
|
|
|
NO_DATA = -9999 |
|
NO_DATA_FLOAT = 0.0001 |
|
PERCENTILES = (0.1, 99.9) |
|
|
|
|
|
def process_channel_group(orig_img, new_img, channels, data_mean, data_std): |
|
""" Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the |
|
original range using *data_mean* and *data_std* and then lowest and highest percentiles are |
|
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first. |
|
Args: |
|
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W). |
|
new_img: torch.Tensor representing image with shape = (bands, H, W). |
|
channels: list of indices representing RGB channels. |
|
data_mean: list of mean values for each band. |
|
data_std: list of std values for each band. |
|
Returns: |
|
torch.Tensor with shape (num_channels, height, width) for original image |
|
torch.Tensor with shape (num_channels, height, width) for the other image |
|
""" |
|
|
|
stack_c = [], [] |
|
|
|
for c in channels: |
|
orig_ch = orig_img[c, ...] |
|
valid_mask = torch.ones_like(orig_ch, dtype=torch.bool) |
|
valid_mask[orig_ch == NO_DATA_FLOAT] = False |
|
|
|
|
|
orig_ch = (orig_ch * data_std[c]) + data_mean[c] |
|
new_ch = (new_img[c, ...] * data_std[c]) + data_mean[c] |
|
|
|
|
|
min_value, max_value = np.percentile(orig_ch[valid_mask], PERCENTILES) |
|
|
|
orig_ch = torch.clamp((orig_ch - min_value) / (max_value - min_value), 0, 1) |
|
new_ch = torch.clamp((new_ch - min_value) / (max_value - min_value), 0, 1) |
|
|
|
|
|
orig_ch[~valid_mask] = 0 |
|
new_ch[~valid_mask] = 0 |
|
|
|
stack_c[0].append(orig_ch) |
|
stack_c[1].append(new_ch) |
|
|
|
|
|
stack_orig = torch.stack(stack_c[0], dim=0) |
|
stack_rec = torch.stack(stack_c[1], dim=0) |
|
|
|
return stack_orig, stack_rec |
|
|
|
|
|
def read_geotiff(file_path: str): |
|
""" Read all bands from *file_path* and returns image + meta info. |
|
Args: |
|
file_path: path to image file. |
|
Returns: |
|
np.ndarray with shape (bands, height, width) |
|
meta info dict |
|
""" |
|
|
|
with rasterio.open(file_path) as src: |
|
img = src.read() |
|
meta = src.meta |
|
|
|
return img, meta |
|
|
|
|
|
def save_geotiff(image, output_path: str, meta: dict): |
|
""" Save multi-band image in Geotiff file. |
|
Args: |
|
image: np.ndarray with shape (bands, height, width) |
|
output_path: path where to save the image |
|
meta: dict with meta info. |
|
""" |
|
|
|
with rasterio.open(output_path, "w", **meta) as dest: |
|
for i in range(image.shape[0]): |
|
dest.write(image[i, :, :], i + 1) |
|
|
|
return |
|
|
|
|
|
def _convert_np_uint8(float_image: torch.Tensor): |
|
|
|
image = float_image.numpy() * 255.0 |
|
image = image.astype(dtype=np.uint8) |
|
image = image.transpose((1, 2, 0)) |
|
|
|
return image |
|
|
|
|
|
def load_example(file_paths: List[str], mean: List[float], std: List[float]): |
|
""" Build an input example by loading images in *file_paths*. |
|
Args: |
|
file_paths: list of file paths . |
|
mean: list containing mean values for each band in the images in *file_paths*. |
|
std: list containing std values for each band in the images in *file_paths*. |
|
Returns: |
|
np.array containing created example |
|
list of meta info for each image in *file_paths* |
|
""" |
|
|
|
imgs = [] |
|
metas = [] |
|
|
|
for file in file_paths: |
|
img, meta = read_geotiff(file) |
|
img = img[:6]*10000 if img[:6].mean() <= 2 else img[:6] |
|
|
|
|
|
img = np.moveaxis(img, 0, -1) |
|
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std) |
|
|
|
imgs.append(img) |
|
metas.append(meta) |
|
|
|
imgs = np.stack(imgs, axis=0) |
|
imgs = np.moveaxis(imgs, -1, 0).astype('float32') |
|
imgs = np.expand_dims(imgs, axis=0) |
|
|
|
return imgs, metas |
|
|
|
|
|
def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: float, device: torch.device): |
|
""" Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible). |
|
Args: |
|
model: MAE model to run. |
|
input_data: torch.Tensor with shape (B, C, T, H, W). |
|
mask_ratio: mask ratio to use. |
|
device: device where model should run. |
|
Returns: |
|
3 torch.Tensor with shape (B, C, T, H, W). |
|
""" |
|
|
|
with torch.no_grad(): |
|
x = input_data.to(device) |
|
|
|
_, pred, mask = model(x, mask_ratio) |
|
|
|
|
|
mask_img = model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu() |
|
pred_img = model.unpatchify(pred).detach().cpu() |
|
|
|
|
|
rec_img = input_data.clone() |
|
rec_img[mask_img == 1] = pred_img[mask_img == 1] |
|
|
|
|
|
mask_img = (~(mask_img.to(torch.bool))).to(torch.float) |
|
|
|
return rec_img, mask_img |
|
|
|
|
|
def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data): |
|
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp. |
|
Args: |
|
input_img: input torch.Tensor with shape (C, T, H, W). |
|
rec_img: reconstructed torch.Tensor with shape (C, T, H, W). |
|
mask_img: mask torch.Tensor with shape (C, T, H, W). |
|
channels: list of indices representing RGB channels. |
|
mean: list of mean values for each band. |
|
std: list of std values for each band. |
|
output_dir: directory where to save outputs. |
|
meta_data: list of dicts with geotiff meta info. |
|
""" |
|
|
|
for t in range(input_img.shape[1]): |
|
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :], |
|
new_img=rec_img[:, t, :, :], |
|
channels=channels, data_mean=mean, |
|
data_std=std) |
|
|
|
rgb_mask = mask_img[channels, t, :, :] * rgb_orig |
|
|
|
|
|
|
|
save_geotiff(image=_convert_np_uint8(rgb_orig), |
|
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"), |
|
meta=meta_data[t]) |
|
|
|
save_geotiff(image=_convert_np_uint8(rgb_pred), |
|
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"), |
|
meta=meta_data[t]) |
|
|
|
save_geotiff(image=_convert_np_uint8(rgb_mask), |
|
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"), |
|
meta=meta_data[t]) |
|
|
|
|
|
def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std): |
|
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp. |
|
Args: |
|
input_img: input torch.Tensor with shape (C, T, H, W). |
|
rec_img: reconstructed torch.Tensor with shape (C, T, H, W). |
|
mask_img: mask torch.Tensor with shape (C, T, H, W). |
|
channels: list of indices representing RGB channels. |
|
mean: list of mean values for each band. |
|
std: list of std values for each band. |
|
output_dir: directory where to save outputs. |
|
meta_data: list of dicts with geotiff meta info. |
|
""" |
|
rgb_orig_list = [] |
|
rgb_mask_list = [] |
|
rgb_pred_list = [] |
|
|
|
for t in range(input_img.shape[1]): |
|
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :], |
|
new_img=rec_img[:, t, :, :], |
|
channels=channels, data_mean=mean, |
|
data_std=std) |
|
|
|
rgb_mask = mask_img[channels, t, :, :] * rgb_orig |
|
|
|
|
|
rgb_orig_list.append(_convert_np_uint8(rgb_orig)) |
|
rgb_mask_list.append(_convert_np_uint8(rgb_mask)) |
|
rgb_pred_list.append(_convert_np_uint8(rgb_pred)) |
|
|
|
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list |
|
|
|
return outputs |
|
|
|
|
|
def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str, checkpoint: str): |
|
|
|
|
|
try: |
|
data_files = [x.name for x in data_files] |
|
print('Path extracted from example') |
|
except: |
|
print('Files submitted through UI') |
|
|
|
|
|
print('This is the printout', data_files) |
|
|
|
with open(yaml_file_path, 'r') as f: |
|
params = yaml.safe_load(f) |
|
|
|
model_params = params["model_args"] |
|
|
|
train_params = params["train_params"] |
|
num_frames = model_params['num_frames'] |
|
img_size = model_params['img_size'] |
|
bands = train_params['bands'] |
|
mean = train_params['data_mean'] |
|
std = train_params['data_std'] |
|
|
|
batch_size = 8 |
|
|
|
mask_ratio = train_params['mask_ratio'] if mask_ratio is None else mask_ratio |
|
|
|
|
|
assert len(data_files) == num_frames, "File list must be equal to expected number of frames." |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
else: |
|
device = torch.device('cpu') |
|
|
|
print(f"Using {device} device.\n") |
|
|
|
|
|
|
|
input_data, meta_data = load_example(file_paths=data_files, mean=mean, std=std) |
|
|
|
|
|
|
|
model = MaskedAutoencoderViT( |
|
**model_params) |
|
|
|
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
print(f"\n--> Model has {total_params:,} parameters.\n") |
|
|
|
model.to(device) |
|
|
|
state_dict = torch.load(checkpoint, map_location=device) |
|
model.load_state_dict(state_dict) |
|
print(f"Loaded checkpoint from {checkpoint}") |
|
|
|
|
|
|
|
model.eval() |
|
channels = [bands.index(b) for b in ['B04', 'B03', 'B02']] |
|
|
|
|
|
original_h, original_w = input_data.shape[-2:] |
|
pad_h = img_size - (original_h % img_size) |
|
pad_w = img_size - (original_w % img_size) |
|
input_data = np.pad(input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode='reflect') |
|
|
|
|
|
batch = torch.tensor(input_data, device='cpu') |
|
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size) |
|
h1, w1 = windows.shape[3:5] |
|
windows = rearrange(windows, 'b c t h1 w1 h w -> (b h1 w1) c t h w', h=img_size, w=img_size) |
|
|
|
|
|
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1 |
|
windows = torch.tensor_split(windows, num_batches, dim=0) |
|
|
|
|
|
rec_imgs = [] |
|
mask_imgs = [] |
|
for x in windows: |
|
rec_img, mask_img = run_model(model, x, mask_ratio, device) |
|
rec_imgs.append(rec_img) |
|
mask_imgs.append(mask_img) |
|
|
|
rec_imgs = torch.concat(rec_imgs, dim=0) |
|
mask_imgs = torch.concat(mask_imgs, dim=0) |
|
|
|
|
|
rec_imgs = rearrange(rec_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)', |
|
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1) |
|
mask_imgs = rearrange(mask_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)', |
|
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1) |
|
|
|
|
|
rec_imgs_full = rec_imgs[..., :original_h, :original_w] |
|
mask_imgs_full = mask_imgs[..., :original_h, :original_w] |
|
batch_full = batch[..., :original_h, :original_w] |
|
|
|
|
|
for d in meta_data: |
|
d.update(count=3, dtype='uint8', compress='lzw', nodata=0) |
|
|
|
|
|
|
|
|
|
outputs = extract_rgb_imgs(batch_full[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...], |
|
channels, mean, std) |
|
|
|
|
|
print("Done!") |
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
func = partial(predict_on_images, yaml_file_path=yaml_file_path,checkpoint=checkpoint) |
|
|
|
def preprocess_example(example_list): |
|
print('######## preprocessing here ##########') |
|
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list] |
|
|
|
return example_list |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown(value='# Prithvi image reconstruction demo') |
|
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. Particularly, the model adopts a self-supervised encoder developed with a ViT architecture and Masked AutoEncoder learning strategy, with a MSE as a loss function. The model includes spatial attention across multiple patchies and also temporal attention for each patch. More info about the model and its weights are available [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M).\n |
|
This demo showcases the image reconstracting over three timestamps, with the user providing a set of three HLS images and the model randomly masking out some proportion of the images and then reconstructing them based on the not masked portion of the images.\n |
|
The user needs to provide three HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2. |
|
''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
inp_files = gr.Files(elem_id='files') |
|
|
|
btn = gr.Button("Submit") |
|
with gr.Row(): |
|
gr.Markdown(value='## Original images') |
|
with gr.Row(): |
|
gr.Markdown(value='T1') |
|
gr.Markdown(value='T2') |
|
gr.Markdown(value='T3') |
|
with gr.Row(): |
|
out1_orig_t1=gr.Image(image_mode='RGB') |
|
out2_orig_t2 = gr.Image(image_mode='RGB') |
|
out3_orig_t3 = gr.Image(image_mode='RGB') |
|
with gr.Row(): |
|
gr.Markdown(value='## Masked images') |
|
with gr.Row(): |
|
gr.Markdown(value='T1') |
|
gr.Markdown(value='T2') |
|
gr.Markdown(value='T3') |
|
with gr.Row(): |
|
out4_masked_t1=gr.Image(image_mode='RGB') |
|
out5_masked_t2 = gr.Image(image_mode='RGB') |
|
out6_masked_t3 = gr.Image(image_mode='RGB') |
|
with gr.Row(): |
|
gr.Markdown(value='## Reonstructed images') |
|
with gr.Row(): |
|
gr.Markdown(value='T1') |
|
gr.Markdown(value='T2') |
|
gr.Markdown(value='T3') |
|
with gr.Row(): |
|
out7_pred_t1=gr.Image(image_mode='RGB') |
|
out8_pred_t2 = gr.Image(image_mode='RGB') |
|
out9_pred_t3 = gr.Image(image_mode='RGB') |
|
|
|
|
|
btn.click(fn=func, |
|
|
|
inputs=inp_files, |
|
outputs=[out1_orig_t1, |
|
out2_orig_t2, |
|
out3_orig_t3, |
|
out4_masked_t1, |
|
out5_masked_t2, |
|
out6_masked_t3, |
|
out7_pred_t1, |
|
out8_pred_t2, |
|
out9_pred_t3]) |
|
with gr.Row(): |
|
gr.Examples(examples=[[[os.path.join(os.path.dirname(__file__), "HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), |
|
os.path.join(os.path.dirname(__file__), "HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), |
|
os.path.join(os.path.dirname(__file__), "HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]], |
|
[[os.path.join(os.path.dirname(__file__), "HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), |
|
os.path.join(os.path.dirname(__file__), "HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), |
|
os.path.join(os.path.dirname(__file__), "HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]], |
|
[[os.path.join(os.path.dirname(__file__), "HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), |
|
os.path.join(os.path.dirname(__file__), "HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), |
|
os.path.join(os.path.dirname(__file__), "HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]]], |
|
inputs=inp_files, |
|
outputs=[out1_orig_t1, |
|
out2_orig_t2, |
|
out3_orig_t3, |
|
out4_masked_t1, |
|
out5_masked_t2, |
|
out6_masked_t3, |
|
out7_pred_t1, |
|
out8_pred_t2, |
|
out9_pred_t3], |
|
|
|
fn=func, |
|
cache_examples=True |
|
) |
|
|
|
|
|
demo.launch() |