iblfe commited on
Commit
2912643
1 Parent(s): b585c7f

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/win_run_app-checkpoint.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import time
4
+ import traceback
5
+ import webbrowser
6
+
7
+ # uncomment below to ensure CPU install only uses CPU
8
+ # os.environ['CUDA_VISIBLE_DEVICES'] = ''
9
+
10
+ print('__file__: %s' % __file__)
11
+ path1 = os.path.dirname(os.path.abspath(__file__))
12
+ sys.path.append(path1)
13
+ base_path = os.path.dirname(path1)
14
+ sys.path.append(base_path)
15
+ os.environ['PYTHONPATH'] = path1
16
+ print('path1', path1, flush=True)
17
+
18
+ os.environ['NLTK_DATA'] = os.path.join(base_path, './nltk_data')
19
+ path_list = [os.environ['PATH'],
20
+ os.path.join(base_path, 'poppler/Library/bin/'),
21
+ os.path.join(base_path, 'poppler/Library/lib/'),
22
+ os.path.join(base_path, 'Tesseract-OCR'),
23
+ os.path.join(base_path, 'ms-playwright'),
24
+ os.path.join(base_path, 'ms-playwright/chromium-1076/chrome-win'),
25
+ os.path.join(base_path, 'ms-playwright/ffmpeg-1009'),
26
+ os.path.join(base_path, 'ms-playwright/firefox-1422/firefox'),
27
+ os.path.join(base_path, 'ms-playwright/webkit-1883'),
28
+ os.path.join(base_path, 'rubberband/')]
29
+ os.environ['PATH'] = ';'.join(path_list)
30
+ print(os.environ['PATH'])
31
+
32
+ import shutil, errno
33
+
34
+
35
+ def copy_tree(src, dst):
36
+ try:
37
+ shutil.copytree(src, dst)
38
+ except OSError as exc: # python >2.5
39
+ if exc.errno in (errno.ENOTDIR, errno.EINVAL):
40
+ shutil.copy(src, dst)
41
+ else: raise
42
+
43
+
44
+ def setup_paths():
45
+ for sub in ['src', 'iterators', 'gradio_utils', 'metrics', 'models', '.']:
46
+ path2 = os.path.join(base_path, '..', sub)
47
+ if os.path.isdir(path2):
48
+ if sub == 'models' and os.path.isfile(os.path.join(path2, 'human.jpg')):
49
+ os.environ['H2OGPT_MODEL_BASE'] = path2
50
+ sys.path.append(path2)
51
+ print(path2, flush=True)
52
+
53
+ path2 = os.path.join(path1, '..', sub)
54
+ if os.path.isdir(path2):
55
+ if sub == 'models' and os.path.isfile(os.path.join(path2, 'human.jpg')):
56
+ os.environ['H2OGPT_MODEL_BASE'] = path2
57
+ sys.path.append(path2)
58
+ print(path2, flush=True)
59
+
60
+ # for app, avoid forbidden for web access
61
+ if os.getenv('H2OGPT_MODEL_BASE'):
62
+ base0 = os.environ['H2OGPT_MODEL_BASE']
63
+ if 'Programs' in os.environ['H2OGPT_MODEL_BASE']:
64
+ os.environ['H2OGPT_MODEL_BASE'] = os.environ['H2OGPT_MODEL_BASE'].replace('Programs', 'Temp/gradio/')
65
+ shutil.rmtree(os.environ['H2OGPT_MODEL_BASE'])
66
+ if os.path.isfile(os.path.join(base0, 'human.jpg')):
67
+ copy_tree(base0, os.environ['H2OGPT_MODEL_BASE'])
68
+
69
+
70
+ from importlib.metadata import distribution, PackageNotFoundError
71
+
72
+ try:
73
+ dtorch = distribution('torch')
74
+ assert dtorch is not None
75
+ have_torch = True
76
+ torch_version = dtorch.version
77
+ except (PackageNotFoundError, AssertionError):
78
+ have_torch = False
79
+ torch_version = ''
80
+
81
+
82
+ def _main():
83
+ setup_paths()
84
+ os.environ['h2ogpt_block_gradio_exit'] = 'False'
85
+ os.environ['h2ogpt_score_model'] = ''
86
+
87
+ try:
88
+ from pynvml import nvmlInit, nvmlDeviceGetCount
89
+ nvmlInit()
90
+ deviceCount = nvmlDeviceGetCount()
91
+ except Exception as e:
92
+ print("No GPUs detected by NVML: %s" % str(e))
93
+ deviceCount = 0
94
+
95
+ need_get_gpu_torch = False
96
+ if have_torch and deviceCount > 0:
97
+ if '+cu' not in torch_version:
98
+ need_get_gpu_torch = True
99
+ elif not have_torch and deviceCount > 0:
100
+ need_get_gpu_torch = True
101
+
102
+ print("Torch Status: have torch: %s need get gpu torch: %s CVD: %s GPUs: %s" % (have_torch, need_get_gpu_torch, os.getenv('CUDA_VISIBLE_DEVICES'), deviceCount))
103
+
104
+ auto_install_torch_gpu = False
105
+
106
+ import sys
107
+ if auto_install_torch_gpu and (not have_torch or need_get_gpu_torch) and sys.platform == "win32":
108
+ print("Installing Torch")
109
+ # for one-click, don't have torch installed, install now
110
+ import subprocess
111
+ import sys
112
+
113
+ def install(package):
114
+ subprocess.check_call([sys.executable, "-m", "pip", "install", package])
115
+
116
+ if os.getenv('TORCH_WHEEL'):
117
+ print("Installing Torch from %s" % os.getenv('TORCH_WHEEL'))
118
+ install(os.getenv('TORCH_WHEEL'))
119
+ else:
120
+ if need_get_gpu_torch:
121
+ wheel_file = "https://h2o-release.s3.amazonaws.com/h2ogpt/torch-2.1.2%2Bcu118-cp310-cp310-win_amd64.whl"
122
+ print("Installing Torch from %s" % wheel_file)
123
+ install(wheel_file)
124
+ # assume cpu torch part of install
125
+ #else:
126
+ # wheel_file = "https://h2o-release.s3.amazonaws.com/h2ogpt/torch-2.1.2-cp310-cp310-win_amd64.whl"
127
+ # print("Installing Torch from %s" % wheel_file)
128
+ # install(wheel_file)
129
+ import importlib
130
+ importlib.invalidate_caches()
131
+ import pkg_resources
132
+ importlib.reload(pkg_resources) # re-load because otherwise cache would be bad
133
+
134
+ from generate import entrypoint_main as main_h2ogpt
135
+ main_h2ogpt()
136
+
137
+ server_name = os.getenv('h2ogpt_server_name', os.getenv('H2OGPT_SERVER_NAME', 'localhost'))
138
+ server_port = os.getenv('GRADIO_SERVER_PORT', str(7860))
139
+
140
+ url = "http://%s:%s" % (server_name, server_port)
141
+ webbrowser.open(url)
142
+
143
+ while True:
144
+ time.sleep(10000)
145
+
146
+
147
+ def main():
148
+ try:
149
+ _main()
150
+ except BaseException as e:
151
+ with open('h2ogpt_exception.log', 'at') as f:
152
+ f.write(traceback.format_exc())
153
+ time.sleep(10)
154
+ raise
155
+ time.sleep(10)
156
+
157
+
158
+ if __name__ == "__main__":
159
+ main()