Spaces:
Paused
Paused
import time | |
import threading | |
import importlib | |
from toolbox import update_ui, get_conf | |
from multiprocessing import Process, Pipe | |
model_name = '星火认知大模型' | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): | |
""" | |
⭐多线程方法 | |
函数的说明请见 request_llm/bridge_all.py | |
""" | |
watch_dog_patience = 5 | |
response = "" | |
from .com_sparkapi import SparkRequestInstance | |
sri = SparkRequestInstance() | |
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt): | |
if len(observe_window) >= 1: | |
observe_window[0] = response | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。") | |
return response | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
⭐单线程方法 | |
函数的说明请见 request_llm/bridge_all.py | |
""" | |
chatbot.append((inputs, "")) | |
if additional_fn is not None: | |
from core_functional import handle_core_functionality | |
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) | |
# 开始接收回复 | |
from .com_sparkapi import SparkRequestInstance | |
sri = SparkRequestInstance() | |
for response in sri.generate(inputs, llm_kwargs, history, system_prompt): | |
chatbot[-1] = (inputs, response) | |
yield from update_ui(chatbot=chatbot, history=history) | |
# 总结输出 | |
if response == f"[Local Message]: 等待{model_name}响应中 ...": | |
response = f"[Local Message]: {model_name}响应异常 ..." | |
history.extend([inputs, response]) | |
yield from update_ui(chatbot=chatbot, history=history) |