Spaces:
Paused
Paused
# ------------------------------------------------------------------------------------------------------------------------ | |
# 🔌💻 Source Code From https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8/blob/main/model.py | |
# ------------------------------------------------------------------------------------------------------------------------ | |
import re | |
import numpy as np | |
# import torch | |
from onnxruntime import InferenceSession, SessionOptions | |
# Currently `MatMulInteger` and `DynamicQuantizeLinear` are only supported on CPU, | |
# although they are documented as supported on CUDA. | |
providers = ["CPUExecutionProvider"] | |
# if torch.cuda.is_available(): | |
# providers = ["CUDAExecutionProvider"] + providers | |
# Default paths | |
tokenizer_path = "chatglm-6b-int8-onnx-merged/sentencepiece.model" | |
onnx_model_path = "chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx" | |
# input & output names | |
past_names = [f"past_{name}_{i}" for i in range(28) for name in ["key", "value"]] | |
present_names = [f"present_{name}_{i}" for i in range(28) for name in ["key", "value"]] | |
output_names = ["logits"] + present_names | |
# default kv_cache for first inference | |
default_past_key_values = { | |
k: np.zeros((1, 0, 32, 128), dtype=np.float32) for k in past_names | |
} | |
def chat_template(history: list[tuple[str, str]], current: str): | |
prompt = "" | |
chat_round = 0 | |
for question, answer in history: | |
prompt += f"[Round {chat_round}]\n问:{question}\n答:{answer}\n" | |
chat_round += 1 | |
prompt += f"[Round {chat_round}]\n问:{current}\n答:" | |
return prompt | |
def process_response(response: str): | |
response = response.strip() | |
response = response.replace("[[训练时间]]", "2023年") | |
punkts = [ | |
[",", ","], | |
["!", "!"], | |
[":", ":"], | |
[";", ";"], | |
["\?", "?"], | |
] | |
for item in punkts: | |
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response) | |
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response) | |
return response | |
class ChatGLMModel(): | |
def __init__(self, onnx_model_path=onnx_model_path, tokenizer_path=tokenizer_path, profile=False) -> None: | |
self.tokenizer = ChatGLMTokenizer(tokenizer_path) | |
options = SessionOptions() | |
options.enable_profiling = profile | |
self.session = InferenceSession(onnx_model_path, options, providers=providers) | |
self.eop_token_id = self.tokenizer["<eop>"] | |
def prepare_input(self, prompt: str): | |
input_ids, prefix_mask = self.tokenizer.encode(prompt) | |
input_ids = np.array([input_ids], dtype=np.longlong) | |
prefix_mask = np.array([prefix_mask], dtype=np.longlong) | |
return input_ids, prefix_mask, default_past_key_values | |
def sample_next_token(self, logits: np.ndarray, top_k=50, top_p=0.7, temperature=1): | |
# softmax with temperature | |
exp_logits = np.exp(logits / temperature) | |
probs = exp_logits / np.sum(exp_logits) | |
# top k | |
top_k_idx = np.argsort(-probs)[:top_k] | |
top_k_probs = probs[top_k_idx] | |
# top p | |
cumsum_probs = np.cumsum(top_k_probs) | |
top_k_probs[(cumsum_probs - top_k_probs) > top_p] = 0.0 | |
top_k_probs = top_k_probs / np.sum(top_k_probs) | |
# sample | |
next_token = np.random.choice(top_k_idx, size=1, p=top_k_probs) | |
return next_token[0].item() | |
def generate_iterate(self, prompt: str, max_generated_tokens=100, top_k=50, top_p=0.7, temperature=1): | |
input_ids, prefix_mask, past_key_values = self.prepare_input(prompt) | |
output_tokens = [] | |
while True: | |
inputs = { | |
"input_ids": input_ids, | |
"prefix_mask": prefix_mask, | |
"use_past": np.array(len(output_tokens) > 0), | |
} | |
inputs.update(past_key_values) | |
logits, *past_key_values = self.session.run(output_names, inputs) | |
past_key_values = { k: v for k, v in zip(past_names, past_key_values) } | |
next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature) | |
output_tokens += [next_token] | |
if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens: | |
break | |
input_ids = np.array([[next_token]], dtype=np.longlong) | |
prefix_mask = np.concatenate([prefix_mask, np.array([[0]], dtype=np.longlong)], axis=1) | |
yield process_response(self.tokenizer.decode(output_tokens)) | |
return process_response(self.tokenizer.decode(output_tokens)) | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# 🔌💻 Source Code From https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8/blob/main/tokenizer.py | |
# ------------------------------------------------------------------------------------------------------------------------ | |
import re | |
from sentencepiece import SentencePieceProcessor | |
def replace_spaces_with_blank(match: re.Match[str]): | |
return f"<|blank_{len(match.group())}|>" | |
def replace_blank_with_spaces(match: re.Match[str]): | |
return " " * int(match.group(1)) | |
class ChatGLMTokenizer: | |
def __init__(self, vocab_file): | |
assert vocab_file is not None | |
self.vocab_file = vocab_file | |
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"] | |
self.text_tokenizer = SentencePieceProcessor(str(vocab_file)) | |
def __len__(self): | |
return len(self.text_tokenizer) | |
def __getitem__(self, key: str): | |
return self.text_tokenizer[key] | |
def preprocess(self, text: str, linebreak=True, whitespaces=True): | |
if linebreak: | |
text = text.replace("\n", "<n>") | |
if whitespaces: | |
text = text.replace("\t", "<|tab|>") | |
text = re.sub(r" {2,80}", replace_spaces_with_blank, text) | |
return text | |
def encode( | |
self, text: str, text_pair: str = None, | |
linebreak=True, whitespaces=True, | |
add_dummy_prefix=True, special_tokens=True, | |
) -> tuple[list[int], list[int]]: | |
""" | |
text: Text to encode. Bidirectional part with a [gMASK] and an <sop> for causal LM. | |
text_pair: causal LM part. | |
linebreak: Whether to encode newline (\n) in text. | |
whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. | |
special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. | |
add_dummy_prefix: Whether to add dummy blank space in the beginning. | |
""" | |
text = self.preprocess(text, linebreak, whitespaces) | |
if not add_dummy_prefix: | |
text = "<n>" + text | |
tokens = self.text_tokenizer.encode(text) | |
prefix_mask = [1] * len(tokens) | |
if special_tokens: | |
tokens += [self.text_tokenizer["[gMASK]"], self.text_tokenizer["<sop>"]] | |
prefix_mask += [1, 0] | |
if text_pair is not None: | |
text_pair = self.preprocess(text_pair, linebreak, whitespaces) | |
pair_tokens = self.text_tokenizer.encode(text_pair) | |
tokens += pair_tokens | |
prefix_mask += [0] * len(pair_tokens) | |
if special_tokens: | |
tokens += [self.text_tokenizer["<eop>"]] | |
prefix_mask += [0] | |
return (tokens if add_dummy_prefix else tokens[2:]), prefix_mask | |
def decode(self, text_ids: list[int]) -> str: | |
text = self.text_tokenizer.decode(text_ids) | |
text = text.replace("<n>", "\n") | |
text = text.replace("<|tab|>", "\t") | |
text = re.sub(r"<\|blank_(\d\d?)\|>", replace_blank_with_spaces, text) | |
return text | |