Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import tempfile | |
import gradio as gr | |
import imageio | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
DESCRIPTION = "# zeroscope v2" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
MAX_NUM_FRAMES = int(os.getenv("MAX_NUM_FRAMES", "200")) | |
DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES, int(os.getenv("DEFAULT_NUM_FRAMES", "24"))) | |
MAX_SEED = np.iinfo(np.int32).max | |
if torch.cuda.is_available(): | |
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
pipe.enable_vae_slicing() | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def to_video(frames: np.ndarray, fps: int) -> str: | |
frames = np.clip((frames * 255), 0, 255).astype(np.uint8) | |
out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
writer = imageio.get_writer(out_file.name, format="FFMPEG", fps=fps) | |
for frame in frames: | |
writer.append_data(frame) | |
writer.close() | |
return out_file.name | |
def generate( | |
prompt: str, | |
seed: int, | |
num_frames: int, | |
num_inference_steps: int, | |
progress=gr.Progress(track_tqdm=True), | |
) -> str: | |
generator = torch.Generator().manual_seed(seed) | |
frames = pipe( | |
prompt, | |
num_inference_steps=num_inference_steps, | |
num_frames=num_frames, | |
width=576, | |
height=320, | |
generator=generator, | |
).frames[0] | |
return to_video(frames, 8) | |
examples = [ | |
["An astronaut riding a horse", 0, 24, 25], | |
["A panda eating bamboo on a rock", 0, 24, 25], | |
["Spiderman is surfing", 0, 24, 25], | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Generate video", scale=0) | |
result = gr.Video(label="Result", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
num_frames = gr.Slider( | |
label="Number of frames", | |
minimum=24, | |
maximum=MAX_NUM_FRAMES, | |
step=1, | |
value=24, | |
info="Note that the content of the video also changes when you change the number of frames.", | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=10, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
inputs = [ | |
prompt, | |
seed, | |
num_frames, | |
num_inference_steps, | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=inputs, | |
outputs=result, | |
fn=generate, | |
) | |
gr.on( | |
triggers=[prompt.submit, run_button.click], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() | |