#!/usr/bin/env python from __future__ import annotations import os import random import shlex import subprocess import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download if os.environ.get("SYSTEM") == "spaces": with open("patch") as f: subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f) if not torch.cuda.is_available(): with open("patch-cpu") as f: subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f) sys.path.insert(0, "stylegan2-pytorch") from model import Generator DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist) Related Apps: - [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer) - [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector) - [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation) - [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru) """ SAMPLE_IMAGE_DIR = "https://huggingface.co/spaces/hysts/TADNE/resolve/main/samples" ARTICLE = f"""## Generated images - size: 512x512 - truncation: 0.7 - seed: 0-99 ![samples]({SAMPLE_IMAGE_DIR}/sample.jpg) """ MAX_SEED = np.iinfo(np.int32).max def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def load_model(device: torch.device) -> nn.Module: model = Generator(512, 1024, 4, channel_multiplier=2) path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt") checkpoint = torch.load(path) model.load_state_dict(checkpoint["g_ema"]) model.eval() model.to(device) model.latent_avg = checkpoint["latent_avg"].to(device) with torch.inference_mode(): z = torch.zeros((1, model.style_dim)).to(device) model([z], truncation=0.7, truncation_latent=model.latent_avg) return model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = load_model(device) def generate_z(z_dim: int, seed: int) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float() @torch.inference_mode() def generate_image(seed: int, truncation_psi: float, randomize_noise: bool) -> np.ndarray: seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(model.style_dim, seed) z = z.to(device) out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7) randomize_noise = gr.Checkbox(label="Randomize Noise", value=False) run_button = gr.Button() with gr.Column(): result = gr.Image(label="Output") gr.Markdown(ARTICLE) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate_image, inputs=[seed, psi, randomize_noise], outputs=result, api_name="run", ) if __name__ == "__main__": demo.queue(max_size=10).launch()