Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import string | |
import gradio as gr | |
import PIL.Image | |
import torch | |
from transformers import AutoProcessor, Blip2ForConditionalGeneration | |
DESCRIPTION = '# [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2)' | |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None: | |
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' | |
if torch.cuda.is_available(): | |
DESCRIPTION += '\n<p>Running on GPU 🔥</p>' | |
else: | |
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.' | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
MODEL_ID_OPT_6_7B = 'Salesforce/blip2-opt-6.7b' | |
MODEL_ID_FLAN_T5_XXL = 'Salesforce/blip2-flan-t5-xxl' | |
if torch.cuda.is_available(): | |
model_dict = { | |
#MODEL_ID_OPT_6_7B: { | |
# 'processor': | |
# AutoProcessor.from_pretrained(MODEL_ID_OPT_6_7B), | |
# 'model': | |
# Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_OPT_6_7B, | |
# device_map='auto', | |
# load_in_8bit=True), | |
#}, | |
MODEL_ID_FLAN_T5_XXL: { | |
'processor': | |
AutoProcessor.from_pretrained(MODEL_ID_FLAN_T5_XXL), | |
'model': | |
Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_FLAN_T5_XXL, | |
device_map='auto', | |
load_in_8bit=True), | |
} | |
} | |
else: | |
model_dict = {} | |
def generate_caption(model_id: str, image: PIL.Image.Image, | |
decoding_method: str, temperature: float, | |
length_penalty: float, repetition_penalty: float) -> str: | |
model_info = model_dict[model_id] | |
processor = model_info['processor'] | |
model = model_info['model'] | |
inputs = processor(images=image, | |
return_tensors='pt').to(device, torch.float16) | |
generated_ids = model.generate( | |
pixel_values=inputs.pixel_values, | |
do_sample=decoding_method == 'Nucleus sampling', | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_length=50, | |
min_length=1, | |
num_beams=5, | |
top_p=0.9) | |
result = processor.batch_decode(generated_ids, | |
skip_special_tokens=True)[0].strip() | |
return result | |
def answer_question(model_id: str, image: PIL.Image.Image, text: str, | |
decoding_method: str, temperature: float, | |
length_penalty: float, repetition_penalty: float) -> str: | |
model_info = model_dict[model_id] | |
processor = model_info['processor'] | |
model = model_info['model'] | |
inputs = processor(images=image, text=text, | |
return_tensors='pt').to(device, torch.float16) | |
generated_ids = model.generate(**inputs, | |
do_sample=decoding_method == | |
'Nucleus sampling', | |
temperature=temperature, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_length=30, | |
min_length=1, | |
num_beams=5, | |
top_p=0.9) | |
result = processor.batch_decode(generated_ids, | |
skip_special_tokens=True)[0].strip() | |
return result | |
def postprocess_output(output: str) -> str: | |
if output and not output[-1] in string.punctuation: | |
output += '.' | |
return output | |
def chat( | |
model_id: str, | |
image: PIL.Image.Image, | |
text: str, | |
decoding_method: str, | |
temperature: float, | |
length_penalty: float, | |
repetition_penalty: float, | |
history_orig: list[str] = [], | |
history_qa: list[str] = [], | |
) -> tuple[dict[str, list[str]], dict[str, list[str]], dict[str, list[str]]]: | |
history_orig.append(text) | |
text_qa = f'Question: {text} Answer:' | |
history_qa.append(text_qa) | |
prompt = ' '.join(history_qa) | |
output = answer_question( | |
model_id, | |
image, | |
prompt, | |
decoding_method, | |
temperature, | |
length_penalty, | |
repetition_penalty, | |
) | |
output = postprocess_output(output) | |
history_orig.append(output) | |
history_qa.append(output) | |
chat_val = list(zip(history_orig[0::2], history_orig[1::2])) | |
return gr.update(value=chat_val), gr.update(value=history_orig), gr.update( | |
value=history_qa) | |
examples = [ | |
[ | |
'house.png', | |
'How could someone get out of the house?', | |
], | |
[ | |
'flower.jpg', | |
'What is this flower and where is it\'s origin?', | |
], | |
[ | |
'pizza.jpg', | |
'What are steps to cook it?', | |
], | |
[ | |
'sunset.jpg', | |
'Here is a romantic message going along the photo:', | |
], | |
[ | |
'forbidden_city.webp', | |
'In what dynasties was this place built?', | |
], | |
] | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
image = gr.Image(type='pil') | |
with gr.Accordion(label='Advanced settings', open=False): | |
with gr.Row(): | |
model_id_caption = gr.Dropdown( | |
label='Model ID for image captioning', | |
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL], | |
value=MODEL_ID_FLAN_T5_XXL, | |
interactive=False, | |
visible=False) | |
model_id_chat = gr.Dropdown( | |
label='Model ID for VQA', | |
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL], | |
value=MODEL_ID_FLAN_T5_XXL, | |
interactive=False, | |
visible=False) | |
sampling_method = gr.Radio( | |
label='Text Decoding Method', | |
choices=['Beam search', 'Nucleus sampling'], | |
value='Beam search', | |
) | |
temperature = gr.Slider( | |
label='Temperature (used with nucleus sampling)', | |
minimum=0.5, | |
maximum=1.0, | |
value=1.0, | |
step=0.1, | |
) | |
length_penalty = gr.Slider( | |
label= | |
'Length Penalty (set to larger for longer sequence, used with beam search)', | |
minimum=-1.0, | |
maximum=2.0, | |
value=1.0, | |
step=0.2, | |
) | |
rep_penalty = gr.Slider( | |
label='Repeat Penalty (larger value prevents repetition)', | |
minimum=1.0, | |
maximum=5.0, | |
value=1.5, | |
step=0.5, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown('Image Captioning') | |
caption_button = gr.Button(value='Caption it!') | |
caption_output = gr.Textbox(label='Caption Output') | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown('VQA Chat') | |
vqa_input = gr.Text(label='Chat Input', max_lines=1) | |
with gr.Row(): | |
clear_chat_button = gr.Button(value='Clear') | |
chat_button = gr.Button(value='Submit') | |
chatbot = gr.Chatbot(label='Chat Output') | |
history_orig = gr.State(value=[]) | |
history_qa = gr.State(value=[]) | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
image, | |
vqa_input, | |
], | |
) | |
caption_button.click( | |
fn=generate_caption, | |
inputs=[ | |
model_id_caption, | |
image, | |
sampling_method, | |
temperature, | |
length_penalty, | |
rep_penalty, | |
], | |
outputs=caption_output, | |
api_name='caption', | |
) | |
chat_inputs = [ | |
model_id_chat, | |
image, | |
vqa_input, | |
sampling_method, | |
temperature, | |
length_penalty, | |
rep_penalty, | |
history_orig, | |
history_qa, | |
] | |
chat_outputs = [ | |
chatbot, | |
history_orig, | |
history_qa, | |
] | |
vqa_input.submit( | |
fn=chat, | |
inputs=chat_inputs, | |
outputs=chat_outputs, | |
) | |
chat_button.click( | |
fn=chat, | |
inputs=chat_inputs, | |
outputs=chat_outputs, | |
api_name='chat', | |
) | |
clear_chat_button.click( | |
fn=lambda: ('', [], [], []), | |
inputs=None, | |
outputs=[ | |
vqa_input, | |
chatbot, | |
history_orig, | |
history_qa, | |
], | |
queue=False, | |
api_name='clear', | |
) | |
image.change( | |
fn=lambda: ('', [], [], []), | |
inputs=None, | |
outputs=[ | |
caption_output, | |
chatbot, | |
history_orig, | |
history_qa, | |
], | |
queue=False, | |
) | |
demo.queue(api_open=False, max_size=10).launch() | |