Spaces:
Build error
Build error
import os | |
import torch | |
import torchvision | |
from torch.autograd import Variable | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms, utils | |
import torch.optim as optim | |
import torchvision.transforms as standard_transforms | |
import numpy as np | |
import glob | |
import os | |
from data_loader import Rescale | |
from data_loader import RescaleT | |
from data_loader import RandomCrop | |
from data_loader import ToTensor | |
from data_loader import ToTensorLab | |
from data_loader import SalObjDataset | |
from model import U2NET | |
from model import U2NETP | |
# ------- 1. define loss function -------- | |
bce_loss = nn.BCELoss(size_average=True) | |
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v): | |
loss0 = bce_loss(d0,labels_v) | |
loss1 = bce_loss(d1,labels_v) | |
loss2 = bce_loss(d2,labels_v) | |
loss3 = bce_loss(d3,labels_v) | |
loss4 = bce_loss(d4,labels_v) | |
loss5 = bce_loss(d5,labels_v) | |
loss6 = bce_loss(d6,labels_v) | |
loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6 | |
print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n"%(loss0.data.item(),loss1.data.item(),loss2.data.item(),loss3.data.item(),loss4.data.item(),loss5.data.item(),loss6.data.item())) | |
return loss0, loss | |
# ------- 2. set the directory of training dataset -------- | |
model_name = 'u2net' #'u2netp' | |
data_dir = os.path.join(os.getcwd(), 'train_data' + os.sep) | |
tra_image_dir = os.path.join('DUTS', 'DUTS-TR', 'DUTS-TR', 'im_aug' + os.sep) | |
tra_label_dir = os.path.join('DUTS', 'DUTS-TR', 'DUTS-TR', 'gt_aug' + os.sep) | |
image_ext = '.jpg' | |
label_ext = '.png' | |
model_dir = os.path.join(os.getcwd(), 'saved_models', model_name + os.sep) | |
epoch_num = 100000 | |
batch_size_train = 12 | |
batch_size_val = 1 | |
train_num = 0 | |
val_num = 0 | |
tra_img_name_list = glob.glob(data_dir + tra_image_dir + '*' + image_ext) | |
tra_lbl_name_list = [] | |
for img_path in tra_img_name_list: | |
img_name = img_path.split(os.sep)[-1] | |
aaa = img_name.split(".") | |
bbb = aaa[0:-1] | |
imidx = bbb[0] | |
for i in range(1,len(bbb)): | |
imidx = imidx + "." + bbb[i] | |
tra_lbl_name_list.append(data_dir + tra_label_dir + imidx + label_ext) | |
print("---") | |
print("train images: ", len(tra_img_name_list)) | |
print("train labels: ", len(tra_lbl_name_list)) | |
print("---") | |
train_num = len(tra_img_name_list) | |
salobj_dataset = SalObjDataset( | |
img_name_list=tra_img_name_list, | |
lbl_name_list=tra_lbl_name_list, | |
transform=transforms.Compose([ | |
RescaleT(320), | |
RandomCrop(288), | |
ToTensorLab(flag=0)])) | |
salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=1) | |
# ------- 3. define model -------- | |
# define the net | |
if(model_name=='u2net'): | |
net = U2NET(3, 1) | |
elif(model_name=='u2netp'): | |
net = U2NETP(3,1) | |
if torch.cuda.is_available(): | |
net.cuda() | |
# ------- 4. define optimizer -------- | |
print("---define optimizer...") | |
optimizer = optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) | |
# ------- 5. training process -------- | |
print("---start training...") | |
ite_num = 0 | |
running_loss = 0.0 | |
running_tar_loss = 0.0 | |
ite_num4val = 0 | |
save_frq = 2000 # save the model every 2000 iterations | |
for epoch in range(0, epoch_num): | |
net.train() | |
for i, data in enumerate(salobj_dataloader): | |
ite_num = ite_num + 1 | |
ite_num4val = ite_num4val + 1 | |
inputs, labels = data['image'], data['label'] | |
inputs = inputs.type(torch.FloatTensor) | |
labels = labels.type(torch.FloatTensor) | |
# wrap them in Variable | |
if torch.cuda.is_available(): | |
inputs_v, labels_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(), | |
requires_grad=False) | |
else: | |
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False) | |
# y zero the parameter gradients | |
optimizer.zero_grad() | |
# forward + backward + optimize | |
d0, d1, d2, d3, d4, d5, d6 = net(inputs_v) | |
loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v) | |
loss.backward() | |
optimizer.step() | |
# # print statistics | |
running_loss += loss.data.item() | |
running_tar_loss += loss2.data.item() | |
# del temporary outputs and loss | |
del d0, d1, d2, d3, d4, d5, d6, loss2, loss | |
print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f " % ( | |
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val)) | |
if ite_num % save_frq == 0: | |
torch.save(net.state_dict(), model_dir + model_name+"_bce_itr_%d_train_%3f_tar_%3f.pth" % (ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val)) | |
running_loss = 0.0 | |
running_tar_loss = 0.0 | |
net.train() # resume train | |
ite_num4val = 0 | |