Spaces:
Build error
Build error
import os | |
import cv2 | |
import argparse | |
import numpy as np | |
from PIL import Image | |
import onnx | |
import onnxruntime | |
class ModNet: | |
def __init__(self, model_path): | |
# Initialize session and get prediction | |
self.session = onnxruntime.InferenceSession(model_path, None) | |
# Get x_scale_factor & y_scale_factor to resize image | |
def get_scale_factor(self, im_h, im_w, ref_size): | |
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: | |
if im_w >= im_h: | |
im_rh = ref_size | |
im_rw = int(im_w / im_h * ref_size) | |
elif im_w < im_h: | |
im_rw = ref_size | |
im_rh = int(im_h / im_w * ref_size) | |
else: | |
im_rh = im_h | |
im_rw = im_w | |
im_rw = im_rw - im_rw % 32 | |
im_rh = im_rh - im_rh % 32 | |
x_scale_factor = im_rw / im_w | |
y_scale_factor = im_rh / im_h | |
return x_scale_factor, y_scale_factor | |
def segment(self, image_path): | |
ref_size = 512 | |
############################################## | |
# Main Inference part | |
############################################## | |
# read image | |
im = cv2.imread(image_path) | |
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) | |
# unify image channels to 3 | |
if len(im.shape) == 2: | |
im = im[:, :, None] | |
if im.shape[2] == 1: | |
im = np.repeat(im, 3, axis=2) | |
elif im.shape[2] == 4: | |
im = im[:, :, 0:3] | |
# normalize values to scale it between -1 to 1 | |
im = (im - 127.5) / 127.5 | |
im_h, im_w, im_c = im.shape | |
x, y = self.get_scale_factor(im_h, im_w, ref_size) | |
# resize image | |
im = cv2.resize(im, None, fx=x, fy=y, interpolation=cv2.INTER_AREA) | |
# prepare input shape | |
im = np.transpose(im) | |
im = np.swapaxes(im, 1, 2) | |
im = np.expand_dims(im, axis=0).astype('float32') | |
input_name = self.session.get_inputs()[0].name | |
output_name = self.session.get_outputs()[0].name | |
result = self.session.run([output_name], {input_name: im}) | |
# refine matte | |
matte = (np.squeeze(result[0]) * 255).astype('uint8') | |
matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation=cv2.INTER_AREA) | |
# obtain predicted foreground | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
if len(image.shape) == 2: | |
image = image[:, :, None] | |
if image.shape[2] == 1: | |
image = np.repeat(image, 3, axis=2) | |
elif image.shape[2] == 4: | |
image = image[:, :, 0:3] | |
matte = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) / 255 | |
foreground = image * matte + np.full(image.shape, 255) * (1 - matte) | |
return foreground | |