|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch BEiT model. """ |
|
|
|
|
|
import collections.abc |
|
import math |
|
import numpy as np |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
import zCurve |
|
import hilbert |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, MSELoss |
|
from einops import rearrange, repeat |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings |
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput |
|
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer |
|
from svitt.sparse_config import BeitConfig |
|
|
|
|
|
_CONFIG_FOR_DOC = "BeitConfig" |
|
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224" |
|
|
|
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"microsoft/beit-base-patch16-224", |
|
|
|
] |
|
|
|
|
|
@dataclass |
|
class BeitModelOutputWithPooling(BaseModelOutputWithPooling): |
|
""" |
|
Class for outputs of :class:`~transformers.BeitModel`. |
|
|
|
Args: |
|
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): |
|
Average of the last layer hidden states of the patch tokens (excluding the `[CLS]` token) if |
|
`config.use_mean_pooling` is set to True. If set to False, then the final hidden state of the `[CLS]` token |
|
will be returned. |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
token_idx: Optional[Tuple[torch.LongTensor]] = None |
|
|
|
|
|
@dataclass |
|
class BeitModelOutput(BaseModelOutput): |
|
token_idx: Optional[Tuple[torch.LongTensor]] = None |
|
|
|
|
|
|
|
|
|
|
|
def to_2tuple(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return (x, x) |
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0.0, training: bool = False): |
|
""" |
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, |
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the |
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the |
|
argument. |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super().__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return "p={}".format(self.drop_prob) |
|
|
|
|
|
|
|
|
|
class BeitEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, position and patch embeddings. Optionally, also the mask token. |
|
|
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
if config.use_mask_token: |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
else: |
|
self.mask_token = None |
|
self.patch_embeddings = PatchEmbeddings( |
|
image_size=config.image_size, |
|
patch_size=config.patch_size, |
|
num_channels=config.num_channels, |
|
embed_dim=config.hidden_size, |
|
) |
|
num_patches = self.patch_embeddings.num_patches |
|
if config.use_absolute_position_embeddings: |
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) |
|
else: |
|
self.position_embeddings = None |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, pixel_values, bool_masked_pos=None): |
|
|
|
if pixel_values.ndim == 5: |
|
embeddings = self.patch_embeddings(pixel_values.flatten(0, 1)) |
|
embeddings = rearrange(embeddings, '(b m) n d -> b (m n) d', m=pixel_values.shape[1]) |
|
else: |
|
embeddings = self.patch_embeddings(pixel_values) |
|
|
|
batch_size, seq_len, _ = embeddings.size() |
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
if bool_masked_pos is not None: |
|
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) |
|
|
|
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1 - w) + mask_tokens * w |
|
|
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1) |
|
if self.position_embeddings is not None: |
|
embeddings = embeddings + self.position_embeddings |
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings |
|
|
|
|
|
|
|
|
|
class PatchEmbeddings(nn.Module): |
|
""" |
|
Image to Patch Embedding. |
|
""" |
|
|
|
def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768): |
|
super().__init__() |
|
image_size = to_2tuple(image_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
self.patch_shape = patch_shape |
|
|
|
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values): |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
|
|
if height != self.image_size[0] or width != self.image_size[1]: |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
x = self.projection(pixel_values).flatten(2).transpose(1, 2) |
|
|
|
return x |
|
|
|
|
|
class BeitSelfAttention(nn.Module): |
|
def __init__(self, config, window_size=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " |
|
f"heads {config.num_attention_heads}." |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
|
|
self.random_attn = config.sparse_random_attn |
|
self.local_attn = config.sparse_local_attn |
|
self.block_size = config.attn_block_size |
|
self.num_cls_tokens = config.num_cls_tokens |
|
if self.local_attn is not None and self.random_attn is not None: |
|
self.num_kv_blocks = self.local_attn + self.random_attn |
|
|
|
if window_size: |
|
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size) |
|
else: |
|
self.relative_position_bias = None |
|
|
|
def split_heads(self, x): |
|
return rearrange(x, 'b n (h d) -> b h n d', h=self.num_attention_heads) |
|
|
|
def join_heads(self, x): |
|
return rearrange(x, 'b h n d -> b n (h d)') |
|
|
|
def blockify(self, x): |
|
assert x.dim() == 4, f"Unsupported input shape {x.shape}" |
|
seq_len = x.shape[2] |
|
if seq_len % self.block_size > 0: |
|
pad_len = self.block_size - seq_len % self.block_size |
|
x = nn.functional.pad(x, (0, 0, 0, pad_len)) |
|
else: |
|
pad_len = 0 |
|
x = rearrange(x, 'b h (m n) d -> b h m n d', n=self.block_size) |
|
return x, pad_len |
|
|
|
def dense_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, k_idx=None): |
|
|
|
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch" |
|
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k) |
|
sim = sim / math.sqrt(self.attention_head_size) |
|
|
|
|
|
if self.relative_position_bias is not None: |
|
if q_idx is not None and q_idx.ndim == 2: |
|
assert k_idx is not None and len(q_idx) == len(k_idx) |
|
bias = torch.stack([ |
|
self.relative_position_bias(from_idx=q_idx_, to_idx=k_idx_) |
|
for q_idx_, k_idx_ in zip(q_idx, k_idx) |
|
]) |
|
else: |
|
bias = self.relative_position_bias(from_idx=q_idx, to_idx=k_idx).unsqueeze(0) |
|
sim = sim + bias |
|
|
|
|
|
if relative_position_bias is not None: |
|
sim = sim + relative_position_bias |
|
|
|
|
|
attn = sim.softmax(dim=-1) |
|
attn = self.dropout(attn) |
|
if head_mask is not None: |
|
attn = attn * head_mask |
|
|
|
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) |
|
return out, attn |
|
|
|
def _sparse_attn_relative_position_bias(self, q_idx, pad_q, attn_idx, group_len): |
|
q_idx_blk = nn.functional.pad(q_idx, (0, pad_q)).view(-1, self.block_size) |
|
attn_idx_flt = rearrange(q_idx_blk[attn_idx], 'm n j -> m (n j)') |
|
cls_idx = torch.arange(self.num_cls_tokens, device=q_idx.device) |
|
cls_idx = repeat(cls_idx, 'n -> m n', m=len(attn_idx_flt)) |
|
attn_idx_flt = torch.cat((cls_idx, attn_idx_flt), dim=1) |
|
attn_idx_flt = repeat(attn_idx_flt, 'm n -> (m i) n', i=group_len) |
|
if pad_q > 0: |
|
attn_idx_flt = attn_idx_flt[:-pad_q] |
|
bias_flt = self.relative_position_bias(from_idx=q_idx, to_idx=attn_idx_flt) |
|
if pad_q > 0: |
|
bias_flt = nn.functional.pad(bias_flt, (0, 0, 0, pad_q)) |
|
return rearrange(bias_flt, 'h (m i) n -> h m i n', i=group_len) |
|
|
|
def sparse_attention(self, q, k, v, head_mask=None, relative_position_bias=None, q_idx=None, mimic_full=False): |
|
assert self.local_attn == 0 or self.local_attn % 2 == 1, "Even local window size not supported" |
|
assert k.shape[2] == v.shape[2], "Key and value shapes mismatch" |
|
|
|
|
|
if not mimic_full: |
|
cls_k, k = k[..., :self.num_cls_tokens, :], k[..., self.num_cls_tokens:, :] |
|
cls_v, v = v[..., :self.num_cls_tokens, :], v[..., self.num_cls_tokens:, :] |
|
|
|
|
|
if mimic_full: |
|
bsz, num_heads, seq_len, dims = q.shape |
|
else: |
|
q, pad_q = self.blockify(q) |
|
k, pad_k = self.blockify(k) |
|
v, pad_v = self.blockify(v) |
|
bsz, num_heads, seq_len, group_len, dims = q.shape |
|
|
|
|
|
cls_sim = torch.einsum('b h n i d, b h j d -> b h n i j', q, cls_k) |
|
|
|
if mimic_full: |
|
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k) |
|
sim = sim / math.sqrt(self.attention_head_size) |
|
sim = sim + self.relative_position_bias(from_idx=q_idx).unsqueeze(0) |
|
|
|
else: |
|
|
|
sim = torch.empty((bsz, num_heads, seq_len, self.num_kv_blocks, group_len, group_len), device=q.device) |
|
attn_idx = torch.zeros((seq_len, self.num_kv_blocks), dtype=torch.int64, device=q.device) |
|
|
|
|
|
cnt = 0 |
|
if self.local_attn > 0: |
|
num_rolls = self.local_attn // 2 |
|
for r in range(-num_rolls, num_rolls + 1): |
|
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.roll(-r, dims=2)) |
|
attn_idx[:, cnt] = torch.arange(seq_len, device=q.device).roll(r) |
|
cnt += 1 |
|
|
|
|
|
if self.random_attn > 0: |
|
|
|
rand = torch.rand((seq_len, seq_len), device=q.device) |
|
if self.local_attn > 0: |
|
|
|
for r in range(-num_rolls, num_rolls + 1): |
|
tgt_idx = list(i % seq_len for i in range(r, seq_len + r)) |
|
rand[range(seq_len), tgt_idx] = 0 |
|
_, idx = rand.topk(self.random_attn, dim=-1) |
|
idx, _ = torch.sort(idx, dim=1) |
|
attn_idx[:, cnt:] = idx |
|
|
|
idx_ = repeat(idx, 'n m -> b h n m i d', b=bsz, h=num_heads, i=group_len, d=dims) |
|
|
|
for r in range(self.random_attn): |
|
sim[..., cnt, :, :] = torch.einsum('b h n i d, b h n j d -> b h n i j', q, k.gather(2, idx_[..., r, :, :])) |
|
cnt += 1 |
|
|
|
sim = rearrange(sim, 'b h m n i j -> b h m i (n j)') |
|
sim = torch.cat((cls_sim, sim), -1) |
|
sim = sim / math.sqrt(self.attention_head_size) |
|
|
|
|
|
|
|
if self.relative_position_bias is not None: |
|
assert q_idx is not None, "query index required for relative position bias" |
|
if q_idx.ndim == 2: |
|
|
|
bias = torch.stack([ |
|
self._sparse_attn_relative_position_bias(q_idx_, pad_q, attn_idx, group_len) |
|
for q_idx_ in q_idx |
|
]) |
|
else: |
|
bias = self._sparse_attn_relative_position_bias(q_idx, pad_q, attn_idx, group_len).unsqueeze(0) |
|
sim = sim + bias |
|
|
|
|
|
if relative_position_bias is not None: |
|
raise NotImplementedError |
|
sim = sim + relative_position_bias |
|
|
|
attn = sim.softmax(dim=-1) |
|
attn = self.dropout(attn) |
|
if head_mask is not None: |
|
attn = attn * head_mask |
|
|
|
|
|
if mimic_full: |
|
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) |
|
|
|
else: |
|
out = torch.empty((bsz, num_heads, seq_len, group_len, dims), device=q.device) |
|
for m in range(seq_len): |
|
v_row = torch.index_select(v, 2, attn_idx[m]) |
|
v_row = rearrange(v_row, 'b h n j d -> b h (n j) d') |
|
v_row = torch.cat((cls_v, v_row), 2) |
|
out[..., m, :, :] = torch.einsum('b h i j, b h j d -> b h i d', attn[..., m, :, :], v_row) |
|
out = rearrange(out, 'b h n i d -> b h (n i) d') |
|
if pad_q > 0: |
|
out = out[..., :-pad_q, :] |
|
|
|
return out, attn |
|
|
|
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None): |
|
|
|
q = self.split_heads(self.query(hidden_states)) |
|
k = self.split_heads(self.key(hidden_states)) |
|
v = self.split_heads(self.value(hidden_states)) |
|
|
|
|
|
|
|
cls_q_idx = torch.arange(self.num_cls_tokens, device=q.device) |
|
if token_idx is not None: |
|
if token_idx.ndim == 2: |
|
cls_q_idx = repeat(cls_q_idx, 'n -> b n', b=q.shape[0]) |
|
all_token_idx = torch.cat((cls_q_idx, token_idx + self.num_cls_tokens), dim=-1) |
|
else: |
|
all_token_idx = None |
|
|
|
if self.random_attn is None: |
|
outputs, attention_probs = self.dense_attention(q, k, v, head_mask=head_mask, |
|
relative_position_bias=relative_position_bias, |
|
q_idx=all_token_idx, |
|
k_idx=all_token_idx) |
|
cls_attention_probs = attention_probs[..., :self.num_cls_tokens, :] |
|
|
|
else: |
|
cls_q, q = q[..., :self.num_cls_tokens, :], q[..., self.num_cls_tokens:, :] |
|
|
|
|
|
cls_outputs, cls_attention_probs = self.dense_attention(cls_q, k, v, head_mask=head_mask, |
|
relative_position_bias=relative_position_bias, |
|
q_idx=cls_q_idx, |
|
k_idx=all_token_idx) |
|
|
|
|
|
if token_idx is None: |
|
token_idx = torch.arange(q.shape[-2], device=q.device) |
|
outputs, attention_probs = self.sparse_attention(q, k, v, head_mask=head_mask, |
|
relative_position_bias=relative_position_bias, |
|
q_idx=token_idx + self.num_cls_tokens) |
|
|
|
outputs = torch.cat((cls_outputs, outputs), dim=2) |
|
|
|
outputs = self.join_heads(outputs) |
|
|
|
outputs = (outputs, cls_attention_probs) if output_attentions else (outputs,) |
|
|
|
return outputs |
|
|
|
|
|
class BeitSelfOutput(nn.Module): |
|
""" |
|
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor, gamma=None): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class BeitAttention(nn.Module): |
|
def __init__(self, config, window_size=None): |
|
super().__init__() |
|
self.attention = BeitSelfAttention(config, window_size=window_size) |
|
self.output = BeitSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None): |
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias, token_idx) |
|
|
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BeitIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class BeitOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class BeitLayer(nn.Module): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config, window_size=None, drop_path_rate=0.0, |
|
token_keep_rate=1.0): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BeitAttention(config, window_size=window_size) |
|
self.intermediate = BeitIntermediate(config) |
|
self.output = BeitOutput(config) |
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() |
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
|
|
self.token_keep_rate = token_keep_rate |
|
self.token_keep_strategy = config.token_keep_strategy |
|
self.num_cls_tokens = config.num_cls_tokens |
|
|
|
init_values = config.layer_scale_init_value |
|
if init_values > 0: |
|
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) |
|
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) |
|
else: |
|
self.lambda_1, self.lambda_2 = None, None |
|
|
|
def sparsify(self, x, attn): |
|
x_cls, x_ = x[:, :self.num_cls_tokens], x[:, self.num_cls_tokens:] |
|
assert 0 < self.token_keep_rate <= 1, "Expected keep rate in range (0, 1]" |
|
left_tokens = math.ceil(self.token_keep_rate * x_.size(1)) |
|
|
|
if self.token_keep_strategy == 'cls_attn': |
|
if len(attn.shape) == 4: |
|
attn = attn.mean(1) |
|
cls_attn = attn[:, 0, self.num_cls_tokens:] |
|
_, idx = torch.topk(cls_attn, left_tokens, dim=1) |
|
|
|
elif self.token_keep_strategy == 'random': |
|
rand = torch.rand(x_.shape[:2], device=x_.device) |
|
_, idx = torch.topk(rand, left_tokens, dim=1) |
|
|
|
else: |
|
raise NotImplementedError(f"Sparse strategy {self.token_keep_strategy} is not implemented") |
|
|
|
idx, _ = torch.sort(idx, dim=1) |
|
index = idx.unsqueeze(-1).expand(-1, -1, x_.size(-1)) |
|
outputs = torch.cat((x_cls, x_.gather(1, index)), dim=1).contiguous() |
|
return outputs, idx |
|
|
|
def forward(self, hidden_states, head_mask=None, output_attentions=False, relative_position_bias=None, token_idx=None): |
|
self_attention_outputs = self.attention( |
|
self.layernorm_before(hidden_states), |
|
head_mask, |
|
output_attentions=(output_attentions or self.token_keep_rate < 1), |
|
relative_position_bias=relative_position_bias, |
|
token_idx=token_idx |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
if self.lambda_1 is not None: |
|
attention_output = self.lambda_1 * attention_output |
|
|
|
|
|
hidden_states = self.drop_path(attention_output) + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
|
|
layer_output = self.intermediate(layer_output) |
|
layer_output = self.output(layer_output) |
|
|
|
if self.lambda_2 is not None: |
|
layer_output = self.lambda_2 * layer_output |
|
|
|
|
|
layer_output = self.drop_path(layer_output) + hidden_states |
|
|
|
|
|
if self.token_keep_rate < 1: |
|
layer_output, token_keep_idx = self.sparsify(layer_output, outputs[0]) |
|
if token_idx is not None: |
|
if token_idx.ndim == 1: |
|
token_idx = repeat(token_idx, 'n -> b n', b=len(token_keep_idx)) |
|
token_keep_idx = token_idx.gather(1, token_keep_idx) |
|
outputs = outputs + (token_keep_idx,) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class BeitRelativePositionBias(nn.Module): |
|
def __init__(self, config, window_size): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, config.num_attention_heads) |
|
) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = torch.zeros( |
|
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype |
|
) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index, persistent=False) |
|
|
|
def forward(self): |
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 |
|
) |
|
|
|
return relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
|
|
|
class BeitRelativePositionBias3D(nn.Module): |
|
""" |
|
3D relative position bias |
|
""" |
|
def __init__(self, config, window_size, num_cls_tokens=1): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_cls_tokens = num_cls_tokens |
|
|
|
relative_size = [w * 2 - 1 for w in window_size] |
|
self.num_relative_distance = np.prod(relative_size) + 2 * num_cls_tokens + num_cls_tokens ** 2 |
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, config.num_attention_heads) |
|
) |
|
|
|
|
|
coords_range = [torch.arange(w) for w in window_size] |
|
coords_flatten = torch.stack(torch.meshgrid(coords_range)).flatten(1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
|
|
for i, w in enumerate(window_size): |
|
relative_coords[:, :, i] += w - 1 |
|
|
|
for i, r in enumerate(relative_size[1:]): |
|
relative_coords[:, :, :i + 1] *= r |
|
|
|
self.seq_len = np.prod(window_size) + num_cls_tokens |
|
relative_position_index = torch.zeros((self.seq_len, self.seq_len), dtype=relative_coords.dtype) |
|
relative_position_index[num_cls_tokens:, num_cls_tokens:] = relative_coords.sum(-1) |
|
|
|
start = np.prod(relative_size) |
|
cls2loc = torch.arange(num_cls_tokens).unsqueeze(1) + start |
|
relative_position_index[:num_cls_tokens, num_cls_tokens:] = cls2loc |
|
start += num_cls_tokens |
|
|
|
loc2cls = torch.arange(num_cls_tokens).unsqueeze(0) + start |
|
relative_position_index[num_cls_tokens:, :num_cls_tokens] = loc2cls |
|
start += num_cls_tokens |
|
|
|
cls2cls = torch.arange(num_cls_tokens ** 2).view(num_cls_tokens, num_cls_tokens) + start |
|
relative_position_index[:num_cls_tokens, :num_cls_tokens] = cls2cls |
|
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
def forward(self, from_idx=None, to_idx=None): |
|
""" |
|
from_idx: indices of query tokens (1-dim) |
|
to_idx: indices of key/value tokens (1-dim, or 2-dim w/ one row per query) |
|
""" |
|
attn_idx = self.relative_position_index |
|
|
|
|
|
if from_idx is not None: |
|
attn_idx = attn_idx[from_idx] |
|
|
|
|
|
if to_idx is not None: |
|
assert to_idx.ndim in (1, 2), "to_idx must be 1- or 2-dimensional tensors" |
|
if to_idx.ndim == 1: |
|
attn_idx = attn_idx[:, to_idx] |
|
else: |
|
attn_idx = attn_idx.gather(1, to_idx) |
|
|
|
rows, cols = attn_idx.shape |
|
relative_position_bias = self.relative_position_bias_table[attn_idx.flatten()] |
|
relative_position_bias = rearrange(relative_position_bias, '(i j) h -> h i j', i=rows, j=cols) |
|
return relative_position_bias.contiguous() |
|
|
|
|
|
class BeitEncoder(nn.Module): |
|
def __init__(self, config, window_size=None): |
|
super().__init__() |
|
self.config = config |
|
if config.use_shared_relative_position_bias: |
|
self.relative_position_bias = BeitRelativePositionBias3D(config, window_size=window_size) |
|
else: |
|
self.relative_position_bias = None |
|
|
|
self._register_token_order(window_size) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] |
|
|
|
|
|
token_keep_rate = [1] * config.num_hidden_layers |
|
for loc in config.token_drop_loc: |
|
token_keep_rate[loc] = config.token_keep_rate |
|
|
|
self.layer = nn.ModuleList( |
|
[ |
|
BeitLayer( |
|
config, |
|
window_size=window_size if config.use_relative_position_bias else None, |
|
drop_path_rate=dpr[i], token_keep_rate=token_keep_rate[i] |
|
) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _register_token_order(self, shape): |
|
if self.config.token_3d_order == 'none': |
|
order = None |
|
elif self.config.token_3d_order == 'zcurve': |
|
nbits = max(shape).bit_length() |
|
coords = list(np.ndindex(*shape)) |
|
order = zCurve.par_interlace(coords, len(shape), nbits) |
|
order = torch.tensor(np.argsort(order)) |
|
elif self.config.token_3d_order == 'hilbert': |
|
nbits = max(shape).bit_length() |
|
coords = list(np.ndindex(*shape)) |
|
order = hilbert.encode(np.stack(coords), len(shape), nbits) |
|
order = torch.tensor(np.argsort(order)) |
|
else: |
|
raise NotImplementedError(f"Token ordering {self.config.token_3d_order} not supported") |
|
|
|
if order is not None: |
|
self.register_buffer('token_order', order, persistent=False) |
|
else: |
|
self.token_order = None |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
head_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_token_idx=False, |
|
return_dict=True, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_token_idx = () if output_token_idx else None |
|
|
|
token_idx = self.token_order |
|
if token_idx is not None: |
|
cls_states, local_states = hidden_states[:, :self.config.num_cls_tokens], hidden_states[:, self.config.num_cls_tokens:] |
|
local_states = torch.index_select(local_states, dim=1, index=token_idx) |
|
hidden_states = torch.cat((cls_states, local_states), 1) |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
layer_head_mask, |
|
) |
|
else: |
|
relative_position_bias = ( |
|
self.relative_position_bias() if self.relative_position_bias is not None else None |
|
) |
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias, token_idx) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if layer_module.token_keep_rate < 1: |
|
token_idx = layer_outputs[-1] |
|
|
|
if output_token_idx: |
|
all_token_idx = all_token_idx + (token_idx,) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BeitModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
token_idx=all_token_idx |
|
) |
|
|
|
|
|
class BeitPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BeitConfig |
|
base_model_prefix = "beit" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BeitEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
BEIT_START_DOCSTRING = r""" |
|
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.BeitConfig`): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model |
|
weights. |
|
""" |
|
|
|
BEIT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using :class:`~transformers.BeitFeatureExtractor`. See |
|
:meth:`transformers.BeitFeatureExtractor.__call__` for details. |
|
|
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (:obj:`bool`, `optional`): |
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned |
|
tensors for more detail. |
|
output_hidden_states (:obj:`bool`, `optional`): |
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for |
|
more detail. |
|
return_dict (:obj:`bool`, `optional`): |
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitModel(BeitPreTrainedModel): |
|
def __init__(self, config, add_pooling_layer=True, num_frames=None): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BeitEmbeddings(config) |
|
self.window_size = self.embeddings.patch_embeddings.patch_shape |
|
if num_frames is not None: |
|
self.window_size = (num_frames,) + self.window_size |
|
self.encoder = BeitEncoder(config, window_size=self.window_size) |
|
|
|
self.layernorm = ( |
|
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
) |
|
self.pooler = BeitPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BeitModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values=None, |
|
bool_masked_pos=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
output_token_idx=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
Returns: |
|
|
|
Examples:: |
|
|
|
>>> from transformers import BeitFeatureExtractor, BeitModel |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') |
|
>>> model = BeitModel.from_pretrained('microsoft/beit-base-patch16-224-pt22k-ft22k') |
|
|
|
>>> inputs = feature_extractor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings(pixel_values, bool_masked_pos) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_token_idx=output_token_idx, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BeitModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
token_idx=encoder_outputs.token_idx, |
|
) |
|
|
|
|
|
class BeitPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.layernorm = ( |
|
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None |
|
) |
|
|
|
def forward(self, hidden_states): |
|
if self.layernorm is not None: |
|
|
|
patch_tokens = hidden_states[:, 1:, :] |
|
pooled_output = self.layernorm(patch_tokens.mean(1)) |
|
else: |
|
|
|
pooled_output = hidden_states[:, 0] |
|
|
|
return pooled_output |
|
|
|
|
|
@add_start_docstrings( |
|
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitForMaskedImageModeling(BeitPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.beit = BeitModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values=None, |
|
bool_masked_pos=None, |
|
head_mask=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
bool_masked_pos (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, num_patches)`): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ..., |
|
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Examples:: |
|
|
|
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224-pt22k') |
|
>>> model = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k') |
|
|
|
>>> inputs = feature_extractor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.beit( |
|
pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
prediction_scores = self.lm_head(sequence_output[:, 1:]) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final |
|
hidden states of the patch tokens) e.g. for ImageNet. |
|
""", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitForImageClassification(BeitPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.beit = BeitModel(config, add_pooling_layer=True) |
|
|
|
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values=None, |
|
head_mask=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ..., |
|
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Examples:: |
|
|
|
>>> from transformers import BeitFeatureExtractor, BeitForImageClassification |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-patch16-224') |
|
>>> model = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224') |
|
|
|
>>> inputs = feature_extractor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
>>> # model predicts one of the 1000 ImageNet classes |
|
>>> predicted_class_idx = logits.argmax(-1).item() |
|
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.beit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs.pooler_output if return_dict else outputs[1] |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.num_labels == 1: |
|
|
|
loss_fct = MSELoss() |
|
loss = loss_fct(logits.view(-1), labels.view(-1)) |
|
else: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class BeitConvModule(nn.Module): |
|
""" |
|
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution |
|
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). |
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, padding=0, bias=False, dilation=1): |
|
super().__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
bias=bias, |
|
dilation=dilation, |
|
) |
|
self.bn = nn.BatchNorm2d(out_channels) |
|
self.activation = nn.ReLU() |
|
|
|
def forward(self, input): |
|
output = self.conv(input) |
|
output = self.bn(output) |
|
output = self.activation(output) |
|
|
|
return output |
|
|
|
|
|
class BeitPyramidPoolingModule(nn.ModuleList): |
|
""" |
|
Pyramid Pooling Module (PPM) used in PSPNet. |
|
|
|
Args: |
|
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid |
|
Module. |
|
in_channels (int): Input channels. |
|
channels (int): Channels after modules, before conv_seg. |
|
align_corners (bool): align_corners argument of F.interpolate. |
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__(self, pool_scales, in_channels, channels, align_corners): |
|
super().__init__() |
|
self.pool_scales = pool_scales |
|
self.align_corners = align_corners |
|
self.in_channels = in_channels |
|
self.channels = channels |
|
for pool_scale in pool_scales: |
|
self.append( |
|
nn.Sequential( |
|
nn.AdaptiveAvgPool2d(pool_scale), |
|
BeitConvModule(self.in_channels, self.channels, kernel_size=1), |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
ppm_outs = [] |
|
for ppm in self: |
|
ppm_out = ppm(x) |
|
upsampled_ppm_out = nn.functional.interpolate( |
|
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners |
|
) |
|
ppm_outs.append(upsampled_ppm_out) |
|
return ppm_outs |
|
|
|
|
|
class BeitUperHead(nn.Module): |
|
""" |
|
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of `UPerNet |
|
<https://arxiv.org/abs/1807.10221>`_. |
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.pool_scales = config.pool_scales |
|
self.in_channels = [config.hidden_size] * 4 |
|
self.channels = config.hidden_size |
|
self.align_corners = False |
|
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) |
|
|
|
|
|
self.psp_modules = BeitPyramidPoolingModule( |
|
self.pool_scales, |
|
self.in_channels[-1], |
|
self.channels, |
|
align_corners=self.align_corners, |
|
) |
|
self.bottleneck = BeitConvModule( |
|
self.in_channels[-1] + len(self.pool_scales) * self.channels, |
|
self.channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
self.lateral_convs = nn.ModuleList() |
|
self.fpn_convs = nn.ModuleList() |
|
for in_channels in self.in_channels[:-1]: |
|
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1) |
|
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1) |
|
self.lateral_convs.append(l_conv) |
|
self.fpn_convs.append(fpn_conv) |
|
|
|
self.fpn_bottleneck = BeitConvModule( |
|
len(self.in_channels) * self.channels, |
|
self.channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
|
|
def psp_forward(self, inputs): |
|
x = inputs[-1] |
|
psp_outs = [x] |
|
psp_outs.extend(self.psp_modules(x)) |
|
psp_outs = torch.cat(psp_outs, dim=1) |
|
output = self.bottleneck(psp_outs) |
|
|
|
return output |
|
|
|
def forward(self, encoder_hidden_states): |
|
|
|
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] |
|
|
|
laterals.append(self.psp_forward(encoder_hidden_states)) |
|
|
|
|
|
used_backbone_levels = len(laterals) |
|
for i in range(used_backbone_levels - 1, 0, -1): |
|
prev_shape = laterals[i - 1].shape[2:] |
|
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( |
|
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners |
|
) |
|
|
|
|
|
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] |
|
|
|
fpn_outs.append(laterals[-1]) |
|
|
|
for i in range(used_backbone_levels - 1, 0, -1): |
|
fpn_outs[i] = nn.functional.interpolate( |
|
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners |
|
) |
|
fpn_outs = torch.cat(fpn_outs, dim=1) |
|
output = self.fpn_bottleneck(fpn_outs) |
|
output = self.classifier(output) |
|
|
|
return output |
|
|
|
|
|
class BeitFCNHead(nn.Module): |
|
""" |
|
Fully Convolution Networks for Semantic Segmentation. This head is implemented of `FCNNet |
|
<https://arxiv.org/abs/1411.4038>`_. |
|
|
|
Args: |
|
config (BeitConfig): Configuration. |
|
in_channels |
|
kernel_size (int): The kernel size for convs in the head. Default: 3. |
|
dilation (int): The dilation rate for convs in the head. Default: 1. |
|
|
|
|
|
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. |
|
""" |
|
|
|
def __init__(self, config, in_index=2, kernel_size=3, dilation=1): |
|
super().__init__() |
|
self.in_channels = config.hidden_size |
|
self.channels = config.auxiliary_channels |
|
self.num_convs = config.auxiliary_num_convs |
|
self.concat_input = config.auxiliary_concat_input |
|
self.in_index = in_index |
|
|
|
conv_padding = (kernel_size // 2) * dilation |
|
convs = [] |
|
convs.append( |
|
BeitConvModule( |
|
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation |
|
) |
|
) |
|
for i in range(self.num_convs - 1): |
|
convs.append( |
|
BeitConvModule( |
|
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation |
|
) |
|
) |
|
if self.num_convs == 0: |
|
self.convs = nn.Identity() |
|
else: |
|
self.convs = nn.Sequential(*convs) |
|
if self.concat_input: |
|
self.conv_cat = BeitConvModule( |
|
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 |
|
) |
|
|
|
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) |
|
|
|
def forward(self, encoder_hidden_states): |
|
|
|
hidden_states = encoder_hidden_states[self.in_index] |
|
output = self.convs(hidden_states) |
|
if self.concat_input: |
|
output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) |
|
output = self.classifier(output) |
|
return output |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. |
|
""", |
|
BEIT_START_DOCSTRING, |
|
) |
|
class BeitForSemanticSegmentation(BeitPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.beit = BeitModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.fpn1 = nn.Sequential( |
|
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), |
|
nn.BatchNorm2d(config.hidden_size), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), |
|
) |
|
self.fpn2 = nn.Sequential( |
|
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), |
|
) |
|
self.fpn3 = nn.Identity() |
|
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
|
|
self.decode_head = BeitUperHead(config) |
|
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None |
|
|
|
|
|
self.post_init() |
|
|
|
def compute_loss(self, logits, auxiliary_logits, labels): |
|
|
|
upsampled_logits = nn.functional.interpolate( |
|
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False |
|
) |
|
if auxiliary_logits is not None: |
|
upsampled_auxiliary_logits = nn.functional.interpolate( |
|
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False |
|
) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) |
|
main_loss = loss_fct(upsampled_logits, labels) |
|
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) |
|
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss |
|
|
|
return loss |
|
|
|
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values=None, |
|
head_mask=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, height, width)`, `optional`): |
|
Ground truth semantic segmentation maps for computing the loss. Indices should be in :obj:`[0, ..., |
|
config.num_labels - 1]`. If :obj:`config.num_labels > 1`, a classification loss is computed |
|
(Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Examples:: |
|
|
|
>>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-base-finetuned-ade-640-640') |
|
>>> model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640') |
|
|
|
>>> inputs = feature_extractor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> # logits are of shape (batch_size, num_labels, height/4, width/4) |
|
>>> logits = outputs.logits |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
outputs = self.beit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=return_dict, |
|
) |
|
|
|
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[2] |
|
|
|
|
|
|
|
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] |
|
batch_size = pixel_values.shape[0] |
|
patch_resolution = self.config.image_size // self.config.patch_size |
|
features = [ |
|
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features |
|
] |
|
|
|
|
|
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] |
|
for i in range(len(features)): |
|
features[i] = ops[i](features[i]) |
|
|
|
logits = self.decode_head(features) |
|
auxiliary_logits = None |
|
if self.auxiliary_head is not None: |
|
auxiliary_logits = self.auxiliary_head(features) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.num_labels == 1: |
|
raise ValueError("The number of labels should be greater than one") |
|
else: |
|
loss = self.compute_loss(logits, auxiliary_logits, labels) |
|
|
|
if not return_dict: |
|
if output_hidden_states: |
|
output = (logits,) + outputs[2:] |
|
else: |
|
output = (logits,) + outputs[3:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states if output_hidden_states else None, |
|
attentions=outputs.attentions, |
|
) |