File size: 9,478 Bytes
c18a21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn.functional as F
import torch.nn as nn
from scipy import interpolate
import numpy as np
from einops import rearrange, repeat


def _init_transformer_weights(module, initializer_range=0.02):
    """Initialize the weights. Copied from transformers ViT/Bert model init"""
    if isinstance(module, (nn.Linear, nn.Conv2d)):
        # Slightly different from the TF version which uses truncated_normal for initialization
        # cf https://github.com/pytorch/pytorch/pull/5617
        module.weight.data.normal_(mean=0.0, std=initializer_range)
        if module.bias is not None:
            module.bias.data.zero_()
    elif isinstance(module, nn.Embedding):
        module.weight.data.normal_(mean=0.0, std=initializer_range)
        if module.padding_idx is not None:
            module.weight.data[module.padding_idx].zero_()
    elif isinstance(module, nn.LayerNorm):
        module.bias.data.zero_()
        module.weight.data.fill_(1.0)


def interpolate_pos_embed(pos_embed_old, pos_embed_new, num_patches_new):
    """
    Args:
        pos_embed_old: (1, L_old, d), pre-trained
        pos_embed_new: (1, L_new, d), newly initialized, to be replaced by interpolated weights
        num_patches_new:
    """
    # interpolate position embedding
    embedding_size = pos_embed_old.shape[-1]
    num_extra_tokens = pos_embed_new.shape[-2] - num_patches_new
    # height (== width) for the checkpoint position embedding
    orig_size = int((pos_embed_old.shape[-2] - num_extra_tokens) ** 0.5)
    # height (== width) for the new position embedding
    new_size = int(num_patches_new ** 0.5)

    if orig_size != new_size:
        # class_token and dist_token are kept unchanged
        # the extra tokens seems always at the beginning of the position embedding
        extra_tokens = pos_embed_old[:, :num_extra_tokens]
        # only the position tokens are interpolated
        pos_tokens = pos_embed_old[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(
            -1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(
            pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        interpolated_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        return interpolated_pos_embed
    else:
        return pos_embed_old


def interpolate_pos_relative_bias_beit(state_dict_old, state_dict_new, patch_shape_new):
    """
    Args:
        state_dict_old: loaded state dict
        state_dict_new: state dict for model with new image size
        patch_shape_new: new model patch_shape
    ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py
    """
    all_keys = list(state_dict_old.keys())
    for key in all_keys:
        if "relative_position_index" in key:
            state_dict_old.pop(key)

        if "relative_position_bias_table" in key:
            rel_pos_bias = state_dict_old[key]
            src_num_pos, num_attn_heads = rel_pos_bias.size()
            dst_num_pos, _ = state_dict_new[key].size()
            dst_patch_shape = patch_shape_new
            if dst_patch_shape[0] != dst_patch_shape[1]:
                raise NotImplementedError()
            num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
            src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
            dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
            if src_size != dst_size:
                extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]

                def geometric_progression(a, r, n):
                    return a * (1.0 - r ** n) / (1.0 - r)

                left, right = 1.01, 1.5
                while right - left > 1e-6:
                    q = (left + right) / 2.0
                    gp = geometric_progression(1, q, src_size // 2)
                    if gp > dst_size // 2:
                        right = q
                    else:
                        left = q

                # if q > 1.090307:
                #     q = 1.090307

                dis = []
                cur = 1
                for i in range(src_size // 2):
                    dis.append(cur)
                    cur += q ** (i + 1)

                r_ids = [-_ for _ in reversed(dis)]

                x = r_ids + [0] + dis
                y = r_ids + [0] + dis

                t = dst_size // 2.0
                dx = np.arange(-t, t + 0.1, 1.0)
                dy = np.arange(-t, t + 0.1, 1.0)

                all_rel_pos_bias = []

                for i in range(num_attn_heads):
                    z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
                    f = interpolate.interp2d(x, y, z, kind='cubic')
                    all_rel_pos_bias.append(
                        torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))

                rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)

                new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
                state_dict_old[key] = new_rel_pos_bias
    return state_dict_old


def interpolate_pos_relative_bias_beit_3d(state_dict_old, state_dict_new, patch_shape_new, src_t_size=1):
    """
    Args:
        state_dict_old: loaded state dict
        state_dict_new: state dict for model with new image size
        patch_shape_new: new model patch_shape
    ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py
    """
    all_keys = list(state_dict_old.keys())
    for key in all_keys:
        if "relative_position_index" in key:
            state_dict_old.pop(key)

        if "relative_position_bias_table" in key:
            src_num_pos, num_attn_heads = state_dict_old[key].size()
            dst_num_pos, _ = state_dict_new[key].size()
            if src_num_pos == dst_num_pos:
                continue

            num_extra_tokens = dst_num_pos - np.prod([w * 2 - 1 for w in patch_shape_new])
                
            src_s_size = int((src_num_pos - num_extra_tokens) / src_t_size)
            src_size = int(src_s_size ** 0.5)
            dst_size = patch_shape_new[-1] * 2 - 1

            if src_size != dst_size:
                # Spatial interpolation
                rel_pos_bias = state_dict_old[key]
                extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]

                def geometric_progression(a, r, n):
                    return a * (1.0 - r ** n) / (1.0 - r)

                left, right = 1.01, 1.5
                while right - left > 1e-6:
                    q = (left + right) / 2.0
                    gp = geometric_progression(1, q, src_size // 2)
                    if gp > dst_size // 2:
                        right = q
                    else:
                        left = q

                # if q > 1.090307:
                #     q = 1.090307

                dis = []
                cur = 1
                for i in range(src_size // 2):
                    dis.append(cur)
                    cur += q ** (i + 1)

                r_ids = [-_ for _ in reversed(dis)]

                x = r_ids + [0] + dis
                y = r_ids + [0] + dis

                t = dst_size // 2.0
                dx = np.arange(-t, t + 0.1, 1.0)
                dy = np.arange(-t, t + 0.1, 1.0)

                all_rel_pos_bias = []

                for i in range(num_attn_heads):
                    z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
                    f = interpolate.interp2d(x, y, z, kind='cubic')
                    all_rel_pos_bias.append(
                        torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))

                rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)

                new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
                state_dict_old[key] = new_rel_pos_bias

            dst_t_size = patch_shape_new[0] * 2 - 1
            if src_t_size != dst_t_size:
                # Temporal interpolation                
                rel_pos_bias = state_dict_old[key]
                extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
                
                if src_t_size == 1:
                    rel_pos_bias = repeat(rel_pos_bias, 's d -> (t s) d', t=dst_t_size)
                else:
                    rel_pos_bias = rearrange(rel_pos_bias, '(t s) d -> s d t', t=src_t_size)
                    rel_pos_bias = F.interpolate(rel_pos_bias, dst_t_size, mode='nearest')
                    rel_pos_bias = rearrange(rel_pos_bias, 's d t -> (t s) d')
                new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
                state_dict_old[key] = new_rel_pos_bias

    return state_dict_old


def tile(x, dim, n_tile):
    init_dim = x.size(dim)
    repeat_idx = [1] * x.dim()
    repeat_idx[dim] = n_tile
    x = x.repeat(*repeat_idx)
    order_index = torch.LongTensor(np.concatenate(
        [init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
    return torch.index_select(x, dim, order_index.to(x.device))


def mask_logits(target, mask):
    return target * mask + (1 - mask) * (-1e10)