File size: 8,313 Bytes
c18a21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cb1ec
 
 
 
c18a21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cb1ec
c18a21e
 
 
 
 
 
 
 
 
 
 
 
 
e0cb1ec
c18a21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cb1ec
c18a21e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
### demo.py
# Define model classes for inference.
###
import json
import numpy as np
import os
import pandas as pd

import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
from sklearn.metrics import confusion_matrix
from einops import rearrange
from transformers import BertTokenizer

from svitt.model import SViTT
from svitt.datasets import VideoClassyDataset
from svitt.video_transforms import Permute
from svitt.config import load_cfg, setup_config
from svitt.evaluation_charades import charades_map
from svitt.evaluation import get_mean_accuracy


class VideoModel(nn.Module):
    """ Base model for video understanding based on SViTT architecture. """
    def __init__(self, config):
        """ Initializes the model.
        Parameters:
            config: config file
        """
        super(VideoModel, self).__init__()
        self.cfg = load_cfg(config)
        self.model = self.build_model()
        use_gpu = torch.cuda.is_available()
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if use_gpu:
            self.model = self.model.to(self.device)
        self.templates = ['{}']
        self.dataset = self.cfg['data']['dataset']
        self.eval()

    def build_model(self):
        cfg = self.cfg
        if cfg['model'].get('pretrain', False):
            ckpt_path = cfg['model']['pretrain']
        else:
            raise Exception('no checkpoint found')
        
        if cfg['model'].get('config', False):
            config_path = cfg['model']['config']
        else:
            raise Exception('no model config found')
        
        self.model_cfg = setup_config(config_path)
        self.tokenizer = BertTokenizer.from_pretrained(self.model_cfg.text_encoder)
        model = SViTT(config=self.model_cfg, tokenizer=self.tokenizer)

        print(f"Loading checkpoint from {ckpt_path}")
        checkpoint = torch.load(ckpt_path, map_location="cpu")
        state_dict = checkpoint["model"]

        # fix for zero-shot evaluation
        for key in list(state_dict.keys()):
            if "bert" in key:
                encoder_key = key.replace("bert.", "")
                state_dict[encoder_key] = state_dict[key]
                    
        if torch.cuda.is_available():
            model.cuda()
                        
        model.load_state_dict(state_dict, strict=False)

        return model
    
    

    def eval(self):
        cudnn.benchmark = True
        for p in self.model.parameters():
            p.requires_grad = False
        self.model.eval()


class VideoCLSModel(VideoModel):
    """ Video model for video classification tasks (Charades-Ego, EGTEA). """
    def __init__(self, config):
        super(VideoCLSModel, self).__init__(config)
        self.labels, self.mapping_vn2act = self.gen_label_map()
        self.text_features = self.get_text_features()

    def gen_label_map(self):
        labelmap = self.cfg.get('label_map', 'meta/charades_ego/label_map.json')
        if os.path.isfile(labelmap):
            print(f"=> Loading label maps from {labelmap}")
            meta = json.load(open(labelmap, 'r'))
            labels, mapping_vn2act = meta['labels'], meta['mapping_vn2act']
        else:
            from svitt.preprocess import generate_label_map
            labels, mapping_vn2act = generate_label_map(self.dataset)
            meta = {'labels': labels, 'mapping_vn2act': mapping_vn2act}
            meta_dir = f'meta/{self.dataset}'
            if not os.path.exists(meta_dir):
                os.makedirs(meta_dir)
            json.dump(meta, open(f'{meta_dir}/label_map.json', 'w'))
            print(f"=> Label map is generated and saved to {meta_dir}/label_map.json")

        return labels, mapping_vn2act
        
    def load_data(self, idx=None): 
        print(f"=> Creating dataset")
        cfg, dataset = self.cfg, self.dataset
        data_cfg = cfg['data']
        crop_size = 224 
        val_transform = transforms.Compose([
            Permute([3, 0, 1, 2]),    # T H W C -> C T H W
            transforms.Resize(crop_size),
            transforms.CenterCrop(crop_size),
            transforms_video.NormalizeVideo(
                mean=[108.3272985, 116.7460125, 104.09373615000001], 
                std=[68.5005327, 66.6321579, 70.32316305],
            ),
        ])

        if idx is None:
            metadata_val = data_cfg['metadata_val']
        else:
            metadata_val = data_cfg['metadata_val'].format(idx)
        if dataset in ['charades_ego', 'egtea']:
            val_dataset = VideoClassyDataset(
                dataset, 
                data_cfg['root'], 
                metadata_val,
                transform=val_transform, 
                is_training=False,
                label_mapping=self.mapping_vn2act, 
                is_trimmed=False,
                num_clips=1, 
                clip_length=data_cfg['clip_length'], 
                clip_stride=data_cfg['clip_stride'],
                sparse_sample=data_cfg['sparse_sample'],
            )
        else:
            raise NotImplementedError

        val_loader = torch.utils.data.DataLoader(
            val_dataset, batch_size=8, shuffle=False,
            num_workers=4, pin_memory=True, sampler=None, drop_last=False
        )

        return val_loader
        
    @torch.no_grad()
    def get_text_features(self):
        print('=> Extracting text features')
        embeddings = self.tokenizer(
            self.labels, 
            padding="max_length", 
            truncation=True,
            max_length=self.model_cfg.max_txt_l.video, 
            return_tensors="pt",
        ).to(self.device)
        _, class_embeddings = self.model.encode_text(embeddings)
        return class_embeddings

    @torch.no_grad()
    def forward(self, idx=None):
        print('=> Start forwarding')
        val_loader = self.load_data(idx)
        all_outputs = []
        all_targets = []
        for i, values in enumerate(val_loader):
            images = values[0]
            target = values[1]

            images = images.to(self.device)

            # encode images
            images = rearrange(images, 'b c k h w ->  b k c h w')
            dims = images.shape
            images = images.reshape(-1, 4, dims[-3], dims[-2], dims[-1])
            
            image_features, _ = self.model.encode_image(images)
            
            if image_features.ndim == 3:
                image_features = rearrange(image_features, '(b k) n d -> b (k n) d', b=1)
            else:
                image_features = rearrange(image_features, '(b k) d -> b k d', b=1)
            
            # cosine similarity as logits
            similarity = self.model.get_sim(image_features, self.text_features)[0]

            all_outputs.append(similarity.cpu())
            all_targets.append(target)

        all_outputs = torch.cat(all_outputs)
        all_targets = torch.cat(all_targets)

        return all_outputs, all_targets

    @torch.no_grad()
    def predict(self, idx=0):
        all_outputs, all_targets = self.forward(idx)
        preds, targets = all_outputs.numpy(), all_targets.numpy()
        #sel = np.where(np.cumsum(sorted(preds[0].tolist(), reverse=True)) > 0.06)[0][0]
        sel = 5
        df = pd.DataFrame(self.labels)
        pred_action = df.iloc[preds[0].argsort()[-sel:]].values.tolist()
        gt_action = df.iloc[np.where(targets[0])[0]].values.tolist()
        pred_action = sorted([x[0] for x in pred_action])
        gt_action = sorted([x[0] for x in gt_action])
        return pred_action, gt_action      

    @torch.no_grad()
    def evaluate(self):
        all_outputs, all_targets = self.forward()
        preds, targets = all_outputs.numpy(), all_targets.numpy()
        if self.dataset == 'charades_ego':
            m_ap, _, m_aps = charades_map(preds, targets)
            print('mAP = {:.3f}'.format(m_ap))
        elif self.dataset == 'egtea':
            cm = confusion_matrix(targets, preds.argmax(axis=1))
            mean_class_acc, acc = get_mean_accuracy(cm)
            print('Mean Acc. = {:.3f}, Top-1 Acc. = {:.3f}'.format(mean_class_acc, acc))
        else:
            raise NotImplementedError