Spaces:
Build error
Build error
File size: 9,667 Bytes
0803ab3 101aa18 0803ab3 101aa18 0803ab3 101aa18 0803ab3 9f6cc2b 0803ab3 db74ba9 9f6cc2b db74ba9 0803ab3 db74ba9 0803ab3 db74ba9 0803ab3 9f6cc2b 0803ab3 9f6cc2b 0803ab3 9f6cc2b 0803ab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import argparse
import json
import textwrap
from os import mkdir
from os.path import join as pjoin, isdir
from data_measurements import dataset_statistics
from data_measurements import dataset_utils
def load_or_prepare_widgets(ds_args, show_embeddings=False, use_cache=False):
"""
Loader specifically for the widgets used in the app.
Args:
ds_args:
show_embeddings:
use_cache:
Returns:
"""
if not isdir(ds_args["cache_dir"]):
print("Creating cache")
# We need to preprocess everything.
# This should eventually all go into a prepare_dataset CLI
mkdir(ds_args["cache_dir"])
dstats = dataset_statistics.DatasetStatisticsCacheClass(**ds_args,
use_cache=use_cache)
# Embeddings widget
dstats.load_or_prepare_dataset()
# Header widget
dstats.load_or_prepare_dset_peek()
# General stats widget
dstats.load_or_prepare_general_stats()
# Labels widget
try:
dstats.set_label_field(ds_args['label_field'])
dstats.load_or_prepare_labels()
except:
pass
# Text lengths widget
dstats.load_or_prepare_text_lengths()
if show_embeddings:
# Embeddings widget
dstats.load_or_prepare_embeddings()
# Text duplicates widget
dstats.load_or_prepare_text_duplicates()
# nPMI widget
dstats.load_or_prepare_npmi()
npmi_stats = dstats.npmi_stats
# Handling for all pairs; in the UI, people select.
do_npmi(npmi_stats)
# Zipf widget
dstats.load_or_prepare_zipf()
def load_or_prepare(dataset_args, do_html=False, use_cache=False):
all = False
dstats = dataset_statistics.DatasetStatisticsCacheClass(**dataset_args, use_cache=use_cache)
print("Loading dataset.")
dstats.load_or_prepare_dataset()
print("Dataset loaded. Preparing vocab.")
dstats.load_or_prepare_vocab()
print("Vocab prepared.")
if not dataset_args["calculation"]:
all = True
if all or dataset_args["calculation"] == "general":
print("\n* Calculating general statistics.")
dstats.load_or_prepare_general_stats()
print("Done!")
print("Basic text statistics now available at %s." % dstats.general_stats_json_fid)
print(
"Text duplicates now available at %s." % dstats.dup_counts_df_fid
)
if all or dataset_args["calculation"] == "lengths":
print("\n* Calculating text lengths.")
dstats.load_or_prepare_text_lengths()
print("Done!")
if all or dataset_args["calculation"] == "labels":
if not dstats.label_field:
print("Warning: You asked for label calculation, but didn't provide "
"the labels field name. Assuming it is 'label'...")
dstats.set_label_field("label")
else:
print("\n* Calculating label distribution.")
dstats.load_or_prepare_labels()
fig_label_html = pjoin(dstats.cache_path, "labels_fig.html")
fig_label_json = pjoin(dstats.cache_path, "labels.json")
dstats.fig_labels.write_html(fig_label_html)
with open(fig_label_json, "w+") as f:
json.dump(dstats.fig_labels.to_json(), f)
print("Done!")
print("Label distribution now available at %s." % dstats.label_dset_fid)
print("Figure saved to %s." % fig_label_html)
if all or dataset_args["calculation"] == "npmi":
print("\n* Preparing nPMI.")
npmi_stats = dataset_statistics.nPMIStatisticsCacheClass(
dstats, use_cache=use_cache
)
do_npmi(npmi_stats, use_cache=use_cache)
print("Done!")
print(
"nPMI results now available in %s for all identity terms that "
"occur more than 10 times and all words that "
"co-occur with both terms."
% npmi_stats.pmi_cache_path
)
if all or dataset_args["calculation"] == "zipf":
print("\n* Preparing Zipf.")
zipf_fig_fid = pjoin(dstats.cache_path, "zipf_fig.html")
zipf_json_fid = pjoin(dstats.cache_path, "zipf_fig.json")
dstats.load_or_prepare_zipf()
zipf_fig = dstats.zipf_fig
with open(zipf_json_fid, "w+") as f:
json.dump(zipf_fig.to_json(), f)
zipf_fig.write_html(zipf_fig_fid)
print("Done!")
print("Zipf results now available at %s." % dstats.zipf_fid)
print(
"Figure saved to %s, with corresponding json at %s."
% (zipf_fig_fid, zipf_json_fid)
)
# Don't do this one until someone specifically asks for it -- takes awhile.
if dataset_args["calculation"] == "embeddings":
print("\n* Preparing text embeddings.")
dstats.load_or_prepare_embeddings()
def do_npmi(npmi_stats, use_cache=True):
available_terms = npmi_stats.load_or_prepare_npmi_terms()
completed_pairs = {}
print("Iterating through terms for joint npmi.")
for term1 in available_terms:
for term2 in available_terms:
if term1 != term2:
sorted_terms = tuple(sorted([term1, term2]))
if sorted_terms not in completed_pairs:
term1, term2 = sorted_terms
print("Computing nPMI statistics for %s and %s" % (term1, term2))
_ = npmi_stats.load_or_prepare_joint_npmi(sorted_terms)
completed_pairs[tuple(sorted_terms)] = {}
def get_text_label_df(
ds_name,
config_name,
split_name,
text_field,
label_field,
calculation,
out_dir,
do_html=False,
use_cache=True,
):
if not use_cache:
print("Not using any cache; starting afresh")
ds_name_to_dict = dataset_utils.get_dataset_info_dicts(ds_name)
if label_field:
label_field, label_names = (
ds_name_to_dict[ds_name][config_name]["features"][label_field][0]
if len(ds_name_to_dict[ds_name][config_name]["features"][label_field]) > 0
else ((), [])
)
else:
label_field = ()
label_names = []
dataset_args = {
"dset_name": ds_name,
"dset_config": config_name,
"split_name": split_name,
"text_field": text_field,
"label_field": label_field,
"label_names": label_names,
"calculation": calculation,
"cache_dir": out_dir,
}
load_or_prepare(dataset_args, use_cache=use_cache)
def main():
# TODO: Make this the Hugging Face arg parser
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=textwrap.dedent(
"""
Example for hate speech18 dataset:
python3 run_data_measurements.py --dataset="hate_speech18" --config="default" --split="train" --feature="text"
Example for IMDB dataset:
python3 run_data_measurements.py --dataset="imdb" --config="plain_text" --split="train" --label_field="label" --feature="text"
"""
),
)
parser.add_argument(
"-d", "--dataset", required=True, help="Name of dataset to prepare"
)
parser.add_argument(
"-c", "--config", required=True, help="Dataset configuration to prepare"
)
parser.add_argument(
"-s", "--split", required=True, type=str, help="Dataset split to prepare"
)
parser.add_argument(
"-f",
"--feature",
required=True,
type=str,
default="text",
help="Text column to prepare",
)
parser.add_argument(
"-w",
"--calculation",
help="""What to calculate (defaults to everything except embeddings).\n
Options are:\n
- `general` (for duplicate counts, missing values, length statistics.)\n
- `lengths` for text length distribution\n
- `labels` for label distribution\n
- `embeddings` (Warning: Slow.)\n
- `npmi` for word associations\n
- `zipf` for zipfian statistics
""",
)
parser.add_argument(
"-l",
"--label_field",
type=str,
required=False,
default="",
help="Field name for label column in dataset (Required if there is a label field that you want information about)",
)
parser.add_argument(
"--cached",
default=False,
required=False,
action="store_true",
help="Whether to use cached files (Optional)",
)
parser.add_argument(
"--do_html",
default=False,
required=False,
action="store_true",
help="Whether to write out corresponding HTML files (Optional)",
)
parser.add_argument("--out_dir", default="cache_dir", help="Where to write out to.")
args = parser.parse_args()
print("Proceeding with the following arguments:")
print(args)
# run_data_measurements.py -d hate_speech18 -c default -s train -f text -w npmi
get_text_label_df(
args.dataset,
args.config,
args.split,
args.feature,
args.label_field,
args.calculation,
args.out_dir,
do_html=args.do_html,
use_cache=args.cached,
)
print()
if __name__ == "__main__":
main()
|