Spaces:
Running
Running
# import gradio as gr | |
import gradio | |
# import lmdb | |
# import base64 | |
# import io | |
# import random | |
# import time | |
import json | |
import copy | |
# import sqlite3 | |
from urllib.parse import urljoin | |
import openai | |
DEFAULT_PROMPT = [ | |
["system", "You(assistant) are a helpful AI assistant."], | |
] | |
# def get_settings(old_state): | |
# db_path = './my_app_state' | |
# env = lmdb.open(db_path, max_dbs=2*1024*1024) | |
# # print(env.stat()) | |
# txn = env.begin() | |
# saved_api_key = txn.get(key=b'api_key').decode('utf-8') or '' | |
# txn.commit() | |
# env.close() | |
# new_state = copy.deepcopy(old_state) or {} | |
# new_state['api_key'] = saved_api_key | |
# return new_state, saved_api_key | |
# def save_settings(old_state, api_key_text): | |
# db_path = './my_app_state' | |
# env = lmdb.open(db_path, max_dbs=2*1024*1024) | |
# # print(env.stat()) | |
# txn = env.begin(write=True) | |
# txn.put(key=b'api_key', value=api_key_text.encode('utf-8')) | |
# # 提交事务 | |
# txn.commit() | |
# return get_settings(old_state) | |
def on_click_send_btn( | |
global_state_json, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log, | |
chat_model, temperature, top_p, choices_num, stream, max_tokens, presence_penalty, frequency_penalty, logit_bias, | |
): | |
old_state = json.loads(global_state_json or "{}") | |
print('\n\n\n\n\n') | |
print(prompt_table) | |
prompt_table = prompt_table or [] | |
chat_log = chat_log or [] | |
chat_log_md = '' | |
if chat_use_prompt: | |
chat_log_md += '<center>(prompt)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) | |
chat_log_md += '\n---\n' | |
if True: | |
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) | |
chat_log_md += '\n---\n' | |
# if chat_input=='': | |
# return json.dumps(old_state), chat_log, chat_log_md, chat_log_md, None, None, chat_input | |
print('\n') | |
print(chat_input) | |
print('') | |
try: | |
logit_bias_json = json.dumps(logit_bias) if logit_bias else None | |
except: | |
return json.dumps(old_state), chat_log, chat_log_md, chat_log_md, None, None, chat_input | |
new_state = copy.deepcopy(old_state) or {} | |
req_hist = copy.deepcopy(prompt_table) if chat_use_prompt else [] | |
if chat_use_history: | |
for hh in (chat_log or []): | |
req_hist.append(hh) | |
if chat_input and chat_input!="": | |
req_hist.append([(chat_input_role or 'user'), chat_input]) | |
openai.api_key = api_key_text | |
props = { | |
'model': chat_model, | |
'messages': [xx for xx in map(lambda it: {'role':it[0], 'content':it[1]}, req_hist)], | |
'temperature': temperature, | |
'top_p': top_p, | |
'n': choices_num, | |
'stream': stream, | |
'presence_penalty': presence_penalty, | |
'frequency_penalty': frequency_penalty, | |
} | |
if max_tokens>0: | |
props['max_tokens'] = max_tokens | |
if logit_bias_json is not None: | |
props['logit_bias'] = logit_bias_json | |
props_json = json.dumps(props) | |
try: | |
completion = openai.ChatCompletion.create(**props) | |
print('') | |
chat_log_md = '' | |
if chat_use_prompt: | |
chat_log_md += '<center>(prompt)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) | |
chat_log_md += '\n---\n' | |
if True: | |
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) | |
chat_log_md += '\n---\n' | |
if chat_input and chat_input!="": | |
chat_log.append([(chat_input_role or 'user'), chat_input]) | |
chat_log_md += f"##### `{(chat_input_role or 'user')}`\n\n{chat_input}\n\n" | |
partial_words = "" | |
counter=0 | |
if stream: | |
the_response = '' | |
the_response_role = '' | |
for chunk in completion: | |
#Skipping first chunk | |
if counter == 0: | |
the_response_role = chunk.choices[0].delta.role | |
chat_log_md += f"##### `{the_response_role}`\n\n" | |
counter += 1 | |
continue | |
# print(('chunk', chunk)) | |
if chunk.choices[0].finish_reason is None: | |
the_response_chunk = chunk.choices[0].delta.content | |
the_response += the_response_chunk | |
chat_log_md += f"{the_response_chunk}" | |
yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, "{}", props_json, '' | |
else: | |
chat_log.append([the_response_role, the_response]) | |
chat_log_md += f"\n\n" | |
yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, '{"msg": "stream模式不支持显示"}', props_json, '' | |
# chat_last_resp = json.dumps(completion.__dict__) | |
# chat_last_resp_dict = json.loads(chat_last_resp) | |
# chat_last_resp_dict['api_key'] = "hidden by UI" | |
# chat_last_resp_dict['organization'] = "hidden by UI" | |
# chat_last_resp = json.dumps(chat_last_resp_dict) | |
else: | |
the_response_role = completion.choices[0].message.role | |
the_response = completion.choices[0].message.content | |
print(the_response) | |
print('') | |
chat_log.append([the_response_role, the_response]) | |
chat_log_md += f"##### `{the_response_role}`\n\n{the_response}\n\n" | |
chat_last_resp = json.dumps(completion.__dict__) | |
chat_last_resp_dict = json.loads(chat_last_resp) | |
chat_last_resp_dict['api_key'] = "hidden by UI" | |
chat_last_resp_dict['organization'] = "hidden by UI" | |
chat_last_resp = json.dumps(chat_last_resp_dict) | |
yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, chat_last_resp, props_json, '' | |
except Exception as error: | |
print(error) | |
print('error!!!!!!') | |
chat_log_md = '' | |
if chat_use_prompt: | |
chat_log_md += '<center>(prompt)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) | |
chat_log_md += '\n---\n' | |
if True: | |
chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n' | |
chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)]) | |
chat_log_md += '\n---\n' | |
# chat_log_md = '' | |
# chat_log_md = "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) if chat_use_prompt else '' | |
# chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", hist)]) | |
chat_log_md += "\n" | |
chat_log_md += str(error) | |
yield json.dumps(new_state), chat_log, chat_log_md, chat_log_md, None, props_json, chat_input | |
def clear_history(): | |
return [], "" | |
def copy_history(txt): | |
# print('\n\n copying') | |
# print(txt) | |
# print('\n\n') | |
pass | |
def update_saved_prompt_titles(global_state_json, selected_saved_prompt_title): | |
print('') | |
global_state = json.loads(global_state_json or "{}") | |
print(global_state) | |
print(selected_saved_prompt_title) | |
saved_prompts = global_state.get('saved_prompts') or [] | |
print(saved_prompts) | |
the_choices = [(it.get('title') or '[untitled]') for it in saved_prompts] | |
print(the_choices) | |
print('') | |
return gradio.Dropdown.update(choices=the_choices) | |
def save_prompt(global_state_json, saved_prompts, prompt_title, prompt_table): | |
the_choices = [] | |
global_state = json.loads(global_state_json or "{}") | |
saved_prompts = global_state.get('saved_prompts') or [] | |
if len(saved_prompts): | |
the_choices = [it.get('title') or '[untitled]' for it in saved_prompts] | |
pass | |
return global_state_json, gradio.Dropdown.update(choices=the_choices, value=prompt_title), prompt_title, prompt_table | |
def load_saved_prompt(title): | |
pass | |
header_intro = """ | |
Try our new ChatGPT Batch Tool: [Here](https://huggingface.co/spaces/hugforziio/chat-gpt-batch) | |
""" | |
css = """ | |
.table-wrap .cell-wrap input {min-width:80%} | |
#api-key-textbox textarea {filter:blur(8px); transition: filter 0.25s} | |
#api-key-textbox textarea:focus {filter:none} | |
#chat-log-md hr {margin-top: 1rem; margin-bottom: 1rem;} | |
""" | |
with gradio.Blocks(title="ChatGPT", css=css) as demo: | |
global_state_json = gradio.Textbox(visible=False) | |
# https://gradio.app/docs | |
# https://platform.openai.com/docs/api-reference/chat/create | |
with gradio.Tab("ChatGPT"): | |
gradio.Markdown(header_intro) | |
with gradio.Row(): | |
with gradio.Box(): | |
with gradio.Column(scale=12): | |
with gradio.Row(): | |
api_key_text = gradio.Textbox(label="Your API key", elem_id="api-key-textbox") | |
with gradio.Row(): | |
with gradio.Column(scale=2): | |
api_key_refresh_btn = gradio.Button("🔄 Load from browser storage") | |
api_key_refresh_btn.click( | |
# get_settings, | |
None, | |
inputs=[], | |
outputs=[api_key_text], | |
api_name="load-settings", | |
_js="""()=>{ | |
const the_api_key = localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]') ?? ''; | |
return the_api_key; | |
}""", | |
) | |
with gradio.Column(scale=2): | |
api_key_save_btn = gradio.Button("💾 Save to browser storage") | |
api_key_save_btn.click( | |
# save_settings, | |
None, | |
inputs=[api_key_text], | |
outputs=[api_key_text], | |
api_name="save-settings", | |
_js="""(api_key_text)=>{ | |
localStorage.setItem('[gradio][chat-gpt-ui][api_key_text]', api_key_text); | |
return api_key_text; | |
}""", | |
) | |
with gradio.Row(): | |
gradio.Markdown("Go to https://platform.openai.com/account/api-keys to get your API key.") | |
with gradio.Row(): | |
with gradio.Box(): | |
gradio.Markdown("**Prompt**") | |
with gradio.Column(scale=12): | |
with gradio.Row(): | |
with gradio.Column(scale=6): | |
prompt_title = gradio.Textbox(label='Prompt title (only for saving)') | |
with gradio.Column(scale=6): | |
selected_saved_prompt_title = gradio.Dropdown(label='Select prompt from saved list (click ♻️ then 🔄)') | |
with gradio.Row(): | |
with gradio.Column(scale=1, min_width=100): | |
saved_prompts_refresh_btn = gradio.Button("♻️") | |
with gradio.Column(scale=1, min_width=100): | |
saved_prompts_save_btn = gradio.Button("💾") | |
with gradio.Column(scale=1, min_width=100): | |
saved_prompts_delete_btn = gradio.Button("🗑") | |
with gradio.Column(scale=1, min_width=100): | |
saved_prompts_list_refresh_btn = gradio.Button("🔄") | |
with gradio.Column(scale=1, min_width=100): | |
copy_prompt = gradio.Button("📑") | |
with gradio.Column(scale=1, min_width=100): | |
paste_prompt = gradio.Button("📋") | |
with gradio.Row(): | |
gradio.Markdown("""Buttons above: ♻️ then 🔄: Load prompts from browser storage. 💾 then 🔄: Save current prompt to browser storage, overwrite the prompt with the same title. 🗑 then 🔄: Delete prompt with the same title from browser storage. 🔄 : Update the selector list. 📑 : Copy current prompt to clipboard. 📋 : Paste prompt from clipboard (need [permission](https://developer.mozilla.org/en-US/docs/Web/API/Clipboard/readText#browser_compatibility)).""") | |
with gradio.Row(): | |
prompt_table = gradio.Dataframe( | |
type='array', | |
label='Prompt content', col_count=(2, 'fixed'), max_cols=2, | |
value=DEFAULT_PROMPT, headers=['role', 'content'], interactive=True, | |
) | |
with gradio.Row(): | |
gradio.Markdown("The Table above is editable. The content will be added to the beginning of the conversation (if you check 'send with prompt' as `√`). See https://platform.openai.com/docs/guides/chat/introduction .") | |
copy_prompt.click(None, inputs=[prompt_title, prompt_table], outputs=[prompt_title, prompt_table], _js="""(prompt_title, prompt_table)=>{ | |
try { | |
const txt = JSON.stringify({ | |
title: prompt_title, | |
content: prompt_table, | |
}, null, 2); | |
console.log(txt); | |
const promise = navigator?.clipboard?.writeText?.(txt); | |
} catch(error) {console?.log?.(error);}; | |
return [prompt_title, prompt_table]; | |
}""") | |
paste_prompt.click(None, inputs=[prompt_title, prompt_table], outputs=[prompt_title, prompt_table], _js="""async (prompt_title, prompt_table)=>{ | |
console.log("flag1"); | |
try { | |
const promise = navigator?.clipboard?.readText?.(); | |
console.log(promise); | |
console.log("flag1 p"); | |
const result = await promise?.then?.((txt)=>{ | |
console.log("flag1 t"); | |
const json = JSON.parse(txt); | |
const title = json?.title ?? ""; | |
console.log("flag1 0"); | |
console.log(title); | |
const content = json?.content ?? {data: [], headers: ['role', 'content']}; | |
console.log(content); | |
const result = [title, content]; | |
console.log("flag1 1"); | |
console.log(result); | |
console.log("flag1 2"); | |
return result; | |
}); | |
console.log("flag1 3"); | |
if (result!=null) { | |
return result; | |
}; | |
} catch(error) {console?.log?.(error);}; | |
console.log("flag2"); | |
try { | |
const promise = navigator?.clipboard?.read?.(); | |
console.log(promise); | |
promise?.then?.((data)=>{ | |
console.log(data); | |
}); | |
} catch(error) {console?.log?.(error);}; | |
console.log("flag3"); | |
return [prompt_title, prompt_table]; | |
}""") | |
saved_prompts_refresh_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title], outputs=[global_state_json, selected_saved_prompt_title], _js="""(global_state_json, saved_prompts)=>{ | |
try { | |
if(global_state_json=="") {global_state_json=null;}; | |
console.log('global_state_json:\\n', global_state_json); | |
const global_state = JSON.parse(global_state_json??"{ }")??{ }; | |
const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]')); | |
console.log('saved:\\n', saved); | |
global_state['saved_prompts'] = saved; | |
global_state['selected_saved_prompt_title'] = saved.map(it=>it?.title??"[untitled]")[0]; | |
const results = [JSON.stringify(global_state), global_state['selected_saved_prompt_title']]; | |
console.log(results); | |
return results; | |
} catch(error) { | |
console.log(error); | |
return ["{ }", ""]; | |
}; | |
}""") | |
saved_prompts_list_refresh_btn.click( | |
update_saved_prompt_titles, inputs=[global_state_json, selected_saved_prompt_title], outputs=[selected_saved_prompt_title], | |
) | |
selected_saved_prompt_title.change(None, inputs=[global_state_json, selected_saved_prompt_title], outputs=[global_state_json, prompt_title, prompt_table], _js="""(global_state_json, selected_saved_prompt_title)=>{ | |
if(global_state_json=="") {global_state_json=null;}; | |
const global_state = JSON.parse(global_state_json??"{ }")??{ }; | |
const found = (global_state?.['saved_prompts']??[]).find(it=>it?.title==selected_saved_prompt_title); | |
return [JSON.stringify(global_state), found?.title??'', found?.content??{data:[], headers:["role", "content"]}]; | |
}""") | |
saved_prompts_delete_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], outputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], _js="""(global_state_json, saved_prompts, prompt_title, prompt_table)=>{ | |
if(prompt_title==""||!prompt_title){ | |
return [global_state_json, selected_saved_prompt_title, prompt_title, prompt_table]; | |
}; | |
console.log('global_state_json:\\n', global_state_json); | |
if(global_state_json=="") {global_state_json=null;}; | |
const global_state = JSON.parse(global_state_json??"{ }")??{ }; | |
console.log(global_state); | |
const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]')); | |
console.log('saved:\\n', saved); | |
global_state['saved_prompts'] = saved?.filter?.(it=>it.title!=prompt_title)??[]; | |
global_state['selected_saved_prompt_title'] = ""; | |
console.log(global_state); | |
localStorage?.setItem?.('[gradio][chat-gpt-ui][prompts]', JSON.stringify(global_state['saved_prompts'])); | |
return [JSON.stringify(global_state), "", "", {data: [], headers: ['role', 'content']}]; | |
}""") | |
saved_prompts_save_btn.click(None, inputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], outputs=[global_state_json, selected_saved_prompt_title, prompt_title, prompt_table], _js="""(global_state_json, saved_prompts, prompt_title, prompt_table)=>{ | |
if(prompt_title==""||!prompt_title){ | |
return [global_state_json, selected_saved_prompt_title, prompt_title, prompt_table]; | |
}; | |
console.log('global_state_json:\\n', global_state_json); | |
if(global_state_json=="") {global_state_json=null;}; | |
const global_state = JSON.parse(global_state_json??"{ }")??{ }; | |
console.log(global_state); | |
const saved = (JSON.parse(localStorage?.getItem?.('[gradio][chat-gpt-ui][prompts]') ?? '[]')); | |
console.log('saved:\\n', saved); | |
const new_prompt_obj = { | |
title: prompt_title, content: prompt_table, | |
}; | |
global_state['saved_prompts'] = saved?.filter?.(it=>it.title!=prompt_title)??[]; | |
global_state['saved_prompts'].unshift(new_prompt_obj); | |
global_state['selected_saved_prompt_title'] = prompt_title; | |
console.log(global_state); | |
localStorage?.setItem?.('[gradio][chat-gpt-ui][prompts]', JSON.stringify(global_state['saved_prompts'])); | |
return [JSON.stringify(global_state), prompt_title, prompt_title, prompt_table]; | |
}""") | |
with gradio.Row(): | |
with gradio.Column(scale=4): | |
with gradio.Box(): | |
gradio.Markdown("See https://platform.openai.com/docs/api-reference/chat/create .") | |
chat_model = gradio.Dropdown(label="model", choices=[ | |
"gpt-3.5-turbo", "gpt-3.5-turbo-0301", "gpt-3.5-turbo-16k", | |
"gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314", | |
], value="gpt-3.5-turbo") | |
chat_temperature = gradio.Slider(label="temperature", value=1, minimum=0, maximum=2) | |
chat_top_p = gradio.Slider(label="top_p", value=1, minimum=0, maximum=1) | |
chat_choices_num = gradio.Slider(label="choices num(n)", value=1, minimum=1, maximum=20) | |
chat_stream = gradio.Checkbox(label="stream", value=True, visible=True) | |
chat_max_tokens = gradio.Slider(label="max_tokens", value=-1, minimum=-1, maximum=4096) | |
chat_presence_penalty = gradio.Slider(label="presence_penalty", value=0, minimum=-2, maximum=2) | |
chat_frequency_penalty = gradio.Slider(label="frequency_penalty", value=0, minimum=-2, maximum=2) | |
chat_logit_bias = gradio.Textbox(label="logit_bias", visible=False) | |
pass | |
with gradio.Column(scale=8): | |
with gradio.Row(): | |
with gradio.Column(scale=10): | |
chat_log = gradio.State() | |
with gradio.Box(): | |
with gradio.Column(scale=10): | |
chat_log_box = gradio.Markdown(label='chat history', value="<center>(empty)</center>", elem_id="chat-log-md") | |
real_md_box = gradio.Textbox(value="", visible=False) | |
with gradio.Row(): | |
chat_copy_history_btn = gradio.Button("Copy all (as HTML)") | |
chat_copy_history_md_btn = gradio.Button("Copy all (as Markdown)") | |
chat_copy_history_btn.click( | |
copy_history, inputs=[chat_log_box], | |
_js="""(txt)=>{ | |
console.log(txt); | |
try {let promise = navigator?.clipboard?.writeText?.(txt);} | |
catch(error) {console?.log?.(error);}; | |
}""", | |
) | |
chat_copy_history_md_btn.click( | |
copy_history, inputs=[real_md_box], | |
_js="""(txt)=>{ | |
console.log(txt); | |
try {let promise = navigator?.clipboard?.writeText?.(txt);} | |
catch(error) {console?.log?.(error);}; | |
}""", | |
) | |
chat_input_role = gradio.Dropdown(label='role', choices=['user', 'system', 'assistant'], value='user') | |
chat_input = gradio.Textbox(lines=4, label='input') | |
with gradio.Row(): | |
chat_clear_history_btn = gradio.Button("clear history") | |
chat_clear_history_btn.click(clear_history, inputs=[], outputs=[chat_log, chat_log_box]) | |
chat_use_prompt = gradio.Checkbox(label='send with prompt', value=True) | |
chat_use_history = gradio.Checkbox(label='send with history', value=True) | |
chat_send_btn = gradio.Button("send") | |
pass | |
with gradio.Row(): | |
chat_last_req = gradio.JSON(label='last request') | |
chat_last_resp = gradio.JSON(label='last response') | |
chat_send_btn.click( | |
on_click_send_btn, | |
inputs=[ | |
global_state_json, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log, | |
chat_model, chat_temperature, chat_top_p, chat_choices_num, chat_stream, chat_max_tokens, chat_presence_penalty, chat_frequency_penalty, chat_logit_bias, | |
], | |
outputs=[global_state_json, chat_log, chat_log_box, real_md_box, chat_last_resp, chat_last_req, chat_input], | |
api_name="click-send-btn", | |
) | |
pass | |
with gradio.Tab("Settings"): | |
gradio.Markdown('Currently nothing.') | |
pass | |
if __name__ == "__main__": | |
demo.queue(concurrency_count=20).launch() | |