File size: 13,995 Bytes
937c040
 
473361e
e9f5fbd
 
a6e635b
e02b0f5
a6e635b
 
 
6a8e0e2
a6e635b
6a8e0e2
a6e635b
6a8e0e2
a6e635b
6a8e0e2
a6e635b
 
 
 
6a8e0e2
a6e635b
 
6a8e0e2
a6e635b
6a8e0e2
a6e635b
6a8e0e2
e02b0f5
6a8e0e2
e02b0f5
 
bc8ae61
 
6a8e0e2
e02b0f5
a6e635b
bc8ae61
 
a6e635b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
print("Start importing everything.")

import pytorch_lightning as pl
print("pl")

import os
import sys
import cv2
import time
import json
print("Start importing everything.")
import torch
print("Start importing everything.")
import mcubes
print("Start importing everything.")
import trimesh
print("Start importing everything.")
import datetime
import argparse
import subprocess
import numpy as np
print("Start importing everything.")
import gradio as gr
from tqdm import tqdm
print("Start importing everything.")
import imageio.v2 as imageio
print("Start importing everything.")
from omegaconf import OmegaConf
print("Start importing everything.")
from safetensors.torch import load_file
print("Start importing everything.")
from huggingface_hub import hf_hub_download

print("Importing everything done.")

os.system("git clone https://github.com/3DTopia/3DTopia.git")
sys.path.append("3DTopia")

print("Github clone done.")

from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler

from utility.initialize import instantiate_from_config, get_obj_from_str
from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes
from utility.triplane_renderer.renderer import get_rays, to8b

import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)

def add_text(rgb, caption):
    font = cv2.FONT_HERSHEY_SIMPLEX
    # org
    gap = 10
    org = (gap, gap)
    # fontScale
    fontScale = 0.3
    # Blue color in BGR
    color = (255, 0, 0)
    # Line thickness of 2 px
    thickness = 1
    break_caption = []
    for i in range(len(caption) // 30 + 1):
        break_caption_i = caption[i*30:(i+1)*30]
        break_caption.append(break_caption_i)
    for i, bci in enumerate(break_caption):
        cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
    return rgb

config = "configs/default.yaml"
local_ckpt = "checkpoints/3dtopia_diffusion_state_dict.ckpt"
if os.path.exists(local_ckpt):
    ckpt = local_ckpt
else:
    ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors")
configs = OmegaConf.load(config)
os.makedirs("tmp", exist_ok=True)

if ckpt.endswith(".ckpt"):
    model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params)
elif ckpt.endswith(".safetensors"):
    model = get_obj_from_str(configs.model["target"])(**configs.model.params)
    model_ckpt = load_file(ckpt)
    model.load_state_dict(model_ckpt)
else:
    raise NotImplementedError
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)

img_size = configs.model.params.unet_config.params.image_size
channels = configs.model.params.unet_config.params.in_channels
shape = [channels, img_size, img_size * 3]

pose_folder = 'assets/sample_data/pose'
poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)])
batch_rays_list = []
H = 128
ratio = 512 // H
for p in poses_fname:
    c2w = np.loadtxt(p).reshape(4, 4)
    c2w[:3, 3] *= 2.2
    c2w = np.array([
        [1, 0, 0, 0],
        [0, 0, -1, 0],
        [0, 1, 0, 0],
        [0, 0, 0, 1]
    ]) @ c2w

    k = np.array([
        [560 / ratio, 0, H * 0.5],
        [0, 560 / ratio, H * 0.5],
        [0, 0, 1]
    ])

    rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4]))
    coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1)
    coords = torch.reshape(coords, [-1,2]).long()
    rays_o = rays_o[coords[:, 0], coords[:, 1]]
    rays_d = rays_d[coords[:, 0], coords[:, 1]]
    batch_rays = torch.stack([rays_o, rays_d], 0)
    batch_rays_list.append(batch_rays)
batch_rays_list = torch.stack(batch_rays_list, 0)

def marching_cube(b, text, global_info):
    # prepare volumn for marching cube
    res = 128
    assert 'decode_res' in global_info
    decode_res = global_info['decode_res']
    c_list = torch.linspace(-1.2, 1.2, steps=res)
    grid_x, grid_y, grid_z = torch.meshgrid(
        c_list, c_list, c_list, indexing='ij'
    )
    coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device)
    plane_axes = generate_planes()
    feats = sample_from_planes(
        plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4
    )
    fake_dirs = torch.zeros_like(coords)
    fake_dirs[..., 0] = 1
    out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs)
    u = out['sigma'].reshape(res, res, res).detach().cpu().numpy()
    del out

    # marching cube
    vertices, triangles = mcubes.marching_cubes(u, 10)
    min_bound = np.array([-1.2, -1.2, -1.2])
    max_bound = np.array([1.2, 1.2, 1.2])
    vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :]
    pt_vertices = torch.from_numpy(vertices).to(device)

    # extract vertices color
    res_triplane = 256
    render_kwargs = {
        'depth_resolution': 128,
        'disparity_space_sampling': False,
        'box_warp': 2.4,
        'depth_resolution_importance': 128,
        'clamp_mode': 'softplus',
        'white_back': True,
        'det': True
    }
    rays_o_list = [
        np.array([0, 0, 2]),
        np.array([0, 0, -2]),
        np.array([0, 2, 0]),
        np.array([0, -2, 0]),
        np.array([2, 0, 0]),
        np.array([-2, 0, 0]),
    ]
    rgb_final = None
    diff_final = None
    for rays_o in tqdm(rays_o_list):
        rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device)
        rays_d = pt_vertices.reshape(-1, 3) - rays_o
        rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1)
        dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1)

        render_out = model.first_stage_model.triplane_decoder(
            decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane),
            rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs,
            whole_img=False, tvloss=False
        )
        rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy()
        depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy()
        depth_diff = np.abs(dist - depth)

        if rgb_final is None:
            rgb_final = rgb.copy()
            diff_final = depth_diff.copy()

        else:
            ind = diff_final > depth_diff
            rgb_final[ind] = rgb[ind]
            diff_final[ind] = depth_diff[ind]

    # bgr to rgb
    rgb_final = np.stack([
        rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0]
    ], -1)

    # export to ply
    mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8))
    path = os.path.join('tmp', f"{text.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.ply")
    trimesh.exchange.export.export_mesh(mesh, path, file_type='ply')

    del vertices, triangles, rgb_final
    torch.cuda.empty_cache()

    return path

def infer(prompt, samples, steps, scale, seed, global_info):
    prompt = prompt.replace('/', '')
    pl.seed_everything(seed)
    batch_size = samples
    with torch.no_grad():
        noise = None
        c = model.get_learned_conditioning([prompt])
        unconditional_c = torch.zeros_like(c)
        sample, _ = sampler.sample(
            S=steps,
            batch_size=batch_size,
            shape=shape,
            verbose=False,
            x_T = noise,
            conditioning = c.repeat(batch_size, 1, 1),
            unconditional_guidance_scale=scale,
            unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1)
        )
        decode_res = model.decode_first_stage(sample)

        big_video_list = []

        global_info['decode_res'] = decode_res

        for b in range(batch_size):
            def render_img(v):
                rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder(
                    decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device),
                )
                rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
                rgb_sample = np.stack(
                    [rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1
                )
                rgb_sample = add_text(rgb_sample, str(b))
                return rgb_sample

            view_num = len(batch_rays_list)
            video_list = []
            for v in tqdm(range(view_num//8*3, view_num//8*5, 2)):
                rgb_sample = render_img(v)
                video_list.append(rgb_sample)
            big_video_list.append(video_list)
        # if batch_size == 2:
        #     cat_video_list = [
        #         np.concatenate([big_video_list[j][i] for j in range(len(big_video_list))], 1) \
        #         for i in range(len(big_video_list[0]))
        #     ]
        # elif batch_size > 2:
        #     if batch_size == 3:
        #         big_video_list.append(
        #             [np.zeros_like(f) for f in big_video_list[0]]
        #         )
        #     cat_video_list = [
        #         np.concatenate([
        #             np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
        #             np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
        #         ], 0) \
        #         for i in range(len(big_video_list[0]))
        #     ]
        # else:
        #     cat_video_list = big_video_list[0]

        for _ in range(4 - batch_size):
            big_video_list.append(
                [np.zeros_like(f) + 255 for f in big_video_list[0]]
            )
        cat_video_list = [
            np.concatenate([
                np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
                np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
            ], 0) \
            for i in range(len(big_video_list[0]))
        ]

        path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
        imageio.mimwrite(path, np.stack(cat_video_list, 0))

    return global_info, path

def infer_stage2(prompt, selection, seed, global_info):
    prompt = prompt.replace('/', '')
    mesh_path = marching_cube(int(selection), prompt, global_info)
    mesh_name = mesh_path.split('/')[-1][:-4]
    
    if2_cmd = f"threefiner if2 --mesh {mesh_path} --prompt \"{prompt}\" --outdir tmp --save {mesh_name}_if2.glb --text_dir --front_dir=-y"
    print(if2_cmd)
    # os.system(if2_cmd)
    subprocess.Popen(if2_cmd, shell=True).wait()
    torch.cuda.empty_cache()

    video_path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
    render_cmd = f"kire {os.path.join('tmp', mesh_name + '_if2.glb')} --save_video {video_path} --wogui --force_cuda_rast --H 256 --W 256"
    print(render_cmd)
    # os.system(render_cmd)
    subprocess.Popen(render_cmd, shell=True).wait()
    torch.cuda.empty_cache()

    return video_path, os.path.join('tmp', mesh_name + '_if2.glb')

markdown=f'''
  # 3DTopia
  A two-stage text-to-3D generation model. The first stage uses diffusion model to quickly generate candidates. The second stage refines the assets chosen from the first stage.

  ### Usage:
  First enter prompt for a 3D object, hit "Generate 3D". Then choose one candidate from the dropdown options for the second stage refinement and hit "Start Refinement". The final mesh can be downloaded from the bottom right box.
  
  ### Runtime:
  The first stage takes 30s if generating 4 samples. The second stage takes roughly 3 min.

  ### Useful links:
  [Github Repo](https://github.com/3DTopia/3DTopia)
'''

block = gr.Blocks()

with block:
    global_info = gr.State(dict())
    gr.Markdown(markdown)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                text = gr.Textbox(
                    label = "Enter your prompt",
                    max_lines = 1,
                    placeholder = "Enter your prompt",
                    container = False,
                )
                btn = gr.Button("Generate 3D")
            gallery = gr.Video(height=512)
            # advanced_button = gr.Button("Advanced Options", elem_id="advanced-btn")
            with gr.Row(elem_id="advanced-options"):
                with gr.Tab("Advanced options"):
                    samples = gr.Slider(label="Number of Samples", minimum=1, maximum=4, value=4, step=1)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=500, value=50, step=1)
                    scale = gr.Slider(
                        label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
                    )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=2147483647,
                        step=1,
                        randomize=True,
                    )
            gr.on([text.submit, btn.click], infer, inputs=[text, samples, steps, scale, seed, global_info], outputs=[global_info, gallery])
            # advanced_button.click(
            #     None,
            #     [],
            #     text,
            # )
        with gr.Column():
            with gr.Row():
                dropdown = gr.Dropdown(
                    ['0', '1', '2', '3'], label="Choose a candidate for stage2", value='0'
                )
                btn_stage2 = gr.Button("Start Refinement")
            gallery = gr.Video(height=512)
            download = gr.File(label="Download mesh", file_count="single", height=100)
            gr.on([btn_stage2.click], infer_stage2, inputs=[text, dropdown, seed, global_info], outputs=[gallery, download])

block.launch(share=True)