Trailblazer / app.py
eggarsway's picture
requirements
ecc17dd
raw
history blame
15.7 kB
import sys
import os
import torch
import gradio as gr
import numpy as np
from PIL import Image, ImageOps, ImageDraw, ImageFont, ImageColor
from urllib.request import urlopen
root = os.path.dirname(os.path.abspath(__file__))
static = os.path.join(root, "static")
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.pipelines import TextToVideoSDPipeline
from diffusers.utils import export_to_video
from TrailBlazer.Misc import ConfigIO
from TrailBlazer.Misc import Logger as log
from TrailBlazer.Pipeline.TextToVideoSDPipelineCall import (
text_to_video_sd_pipeline_call,
)
from TrailBlazer.Pipeline.UNet3DConditionModelCall import (
unet3d_condition_model_forward,
)
TextToVideoSDPipeline.__call__ = text_to_video_sd_pipeline_call
from diffusers.models.unet_3d_condition import UNet3DConditionModel
unet3d_condition_model_forward_copy = UNet3DConditionModel.forward
UNet3DConditionModel.forward = unet3d_condition_model_forward
from diffusers.utils import export_to_video
model_id = "cerspense/zeroscope_v2_576w"
model_path = model_id
pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
#pipe.enable_model_cpu_offload()
def core(bundle):
generator = torch.Generator().manual_seed(int(bundle["seed"]))
result = pipe(
bundle=bundle,
height=512,
width=512,
generator=generator,
num_inference_steps=40,
)
return result.frames
def clear_btn_fn():
return "", "", "", ""
def gen_btn_fn(
prompts,
bboxes,
frames,
word_prompt_indices,
trailing_length,
n_spatial_steps,
n_temporal_steps,
spatial_strengthen_scale,
spatial_weaken_scale,
temporal_strengthen_scale,
temporal_weaken_scale,
rand_seed,
):
bundle = {}
bundle["trailing_length"] = trailing_length
bundle["num_dd_spatial_steps"] = n_spatial_steps
bundle["num_dd_temporal_steps"] = n_temporal_steps
bundle["num_frames"] = 24
bundle["seed"] = rand_seed
bundle["spatial_strengthen_scale"] = spatial_strengthen_scale
bundle["spatial_weaken_scale"] = spatial_weaken_scale
bundle["temp_strengthen_scale"] = temporal_strengthen_scale
bundle["temp_weaken_scale"] = temporal_weaken_scale
bundle["token_inds"] = [int(v) for v in word_prompt_indices.split(",")]
bundle["keyframe"] = []
frames = frames.split(";")
bboxes = bboxes.split(";")
if ";" in prompts:
prompts = prompts.split(";")
else:
prompts = [prompts for i in range(len(frames))]
assert (
len(frames) == len(bboxes) == len(prompts)
), "Inconsistent number of keyframes in the given inputs."
frames.pop()
bboxes.pop()
prompts.pop()
for i in range(len(frames)):
keyframe = {}
keyframe["bbox_ratios"] = [float(v) for v in bboxes[i].split(",")]
keyframe["frame"] = int(frames[i])
keyframe["prompt"] = prompts[i]
bundle["keyframe"].append(keyframe)
print(bundle)
result = core(bundle)
path = export_to_video(result)
return path
def save_mask(inputs):
layers = inputs["layers"]
if not layers:
return inputs["background"]
mask = layers[0]
new_image = Image.new("RGBA", mask.size, color="white")
new_image.paste(mask, mask=mask)
new_image = new_image.convert("RGB")
print("SAve")
return ImageOps.invert(new_image)
def out_label_cb(im):
layers = im["layers"]
if not isinstance(layers, list):
layers = [layers]
img = None
text = "Bboxes: "
for idx, layer in enumerate(layers):
mask = np.array(layer).sum(axis=-1)
ys, xs = np.where(mask != 0)
h, w = mask.shape
if not list(xs) or not list(ys):
continue
x_min = np.min(xs)
x_max = np.max(xs)
y_min = np.min(ys)
y_max = np.max(ys)
text += "{:.2f},{:.2f},{:.2f},{:.2f}".format(
x_min * 1.0 / w, y_min * 1.0 / h, x_max * 1.0 / w, y_max * 1.0 / h
)
text += ";\n"
return text
def out_board_cb(im):
layers = im["layers"]
if not isinstance(layers, list):
layers = [layers]
img = None
for idx, layer in enumerate(layers):
mask = np.array(layer).sum(axis=-1)
ys, xs = np.where(mask != 0)
if not list(xs) or not list(ys):
continue
h, w = mask.shape
if not img:
img = Image.new("RGBA", (w, h))
x_min = np.min(xs)
x_max = np.max(xs)
y_min = np.min(ys)
y_max = np.max(ys)
# output
shape = [(x_min, y_min), (x_max, y_max)]
colors = list(ImageColor.colormap.keys())
draw = ImageDraw.Draw(img)
draw.rectangle(shape, outline=colors[idx], width=5)
text = "Bbox#{}".format(idx)
font = ImageFont.load_default()
draw.text((x_max - 0.5 * (x_max - x_min), y_max), text, font=font, align="left")
return img
with gr.Blocks(
analytics_enabled=False,
title="TrailBlazer Demo",
) as main:
description = """
<h1 align="center" style="font-size: 48px">TrailBlazer: Trajectory Control for Diffusion-Based Video Generation</h1>
<h4 align="center" style="margin: 0;">If you like our project, please give us a star ✨ at our Huggingface space, and our Github repository.</h4>
<br>
<span align="center" style="font-size: 18px">
[<a href="https://hohonu-vicml.github.io/Trailblazer.Page/" target="_blank">Project Page</a>]
[<a href="http://arxiv.org/abs/2401.00896" target="_blank">Paper</a>]
[<a href="https://github.com/hohonu-vicml/Trailblazer" target="_blank">GitHub</a>]
[<a href="https://www.youtube.com/watch?v=kEN-32wN-xQ" target="_blank">Project Video</a>]
[<a href="https://www.youtube.com/watch?v=P-PSkS7sNco" target="_blank">Result Video</a>]
</span>
</p>
<p>
<strong>Usage:</strong> Our Gradio app is implemented based on our executable script CmdTrailBlazer in our github repository. Please see our general information below for a quick guidance, as well as the hints within the app widgets.
<ul>
<li>Basic: The bounding box (bbox) is the tuple of four floats for the rectangular corners: left, top, right, bottom in the normalized ratio. The Word prompt indices is a list of 1-indexed numbers determining the prompt word.</li>
<li>Advanced Options: We also offer some key parameters to adjust the synthesis result. Please see our paper for more information about the ablations.</li>
</ul>
</p>
"""
gr.HTML(description)
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Tab("Main"):
text_prompt_tb = gr.Textbox(
interactive=True, label="Keyframe: Prompt"
)
bboxes_tb = gr.Textbox(interactive=True, label="Keyframe: Bboxes")
frame_tb = gr.Textbox(
interactive=True, label="Keyframe: frame indices"
)
with gr.Row():
word_prompt_indices_tb = gr.Textbox(
interactive=True, label="Word prompt indices:"
)
text = "Hint: Each keyframe ends with <strong>SEMICOLON</strong>, and <strong>COMMA</strong> for separating each value in the keyframe. The prompt field can be a single prompt without semicolon, or multiple prompts ended semicolon. One can use the SketchPadHelper tab to help to design the bboxes field."
gr.HTML(text)
with gr.Row():
clear_btn = gr.Button(value="Clear")
gen_btn = gr.Button(value="Generate")
with gr.Accordion("Advanced Options", open=False):
text = "Hint: This default value should be sufficient for most tasks. However, it's important to note that our approach is currently implemented on ZeroScope, and its performance may be influenced by the model's characteristics. We plan to conduct experiments on different models in the future."
gr.HTML(text)
with gr.Row():
trailing_length = gr.Slider(
minimum=0,
maximum=30,
step=1,
value=13,
interactive=True,
label="#Trailing",
)
n_spatial_steps = gr.Slider(
minimum=0,
maximum=30,
step=1,
value=5,
interactive=True,
label="#Spatial edits",
)
n_temporal_steps = gr.Slider(
minimum=0,
maximum=30,
step=1,
value=5,
interactive=True,
label="#Temporal edits",
)
with gr.Row():
spatial_strengthen_scale = gr.Slider(
minimum=0,
maximum=2,
step=0.01,
value=0.15,
interactive=True,
label="Spatial Strengthen Scale",
)
spatial_weaken_scale = gr.Slider(
minimum=0,
maximum=1,
step=0.01,
value=0.001,
interactive=True,
label="Spatial Weaken Scale",
)
temporal_strengthen_scale = gr.Slider(
minimum=0,
maximum=2,
step=0.01,
value=0.15,
interactive=True,
label="Temporal Strengthen Scale",
)
temporal_weaken_scale = gr.Slider(
minimum=0,
maximum=1,
step=0.01,
value=0.001,
interactive=True,
label="Temporal Weaken Scale",
)
with gr.Row():
guidance_scale = gr.Slider(
minimum=0,
maximum=50,
step=0.5,
value=7.5,
interactive=True,
label="Guidance Scale",
)
rand_seed = gr.Slider(
minimum=0,
maximum=523451232531,
step=1,
value=0,
interactive=True,
label="Seed",
)
with gr.Tab("SketchPadHelper"):
with gr.Row():
user_board = gr.ImageMask(type="pil", label="Draw me")
out_board = gr.Image(type="pil", label="Processed bbox")
user_board.change(
out_board_cb, inputs=[user_board], outputs=[out_board]
)
with gr.Row():
text = "Hint: Utilize a black pen with the Draw Button to create a ``rough'' bbox. When you press the green ``Save Changes'' Button, the app calculates the minimum and maximum boundaries. Each ``Layer'', located at the bottom left of the pad, corresponds to one bounding box. Copy the returned value to the bbox textfield in the main tab."
gr.HTML(text)
with gr.Row():
out_label = gr.Label(label="Converted bboxes string")
user_board.change(
out_label_cb, inputs=[user_board], outputs=[out_label]
)
with gr.Column(scale=1):
gr.HTML(
'<span style="font-size: 20px; font-weight: bold">Generated Images</span>'
)
with gr.Row():
out_gen_1 = gr.Video(visible=True, show_label=False)
with gr.Row():
gr.Examples(
examples=[
[
"A clown fish swimming in a coral reef",
"0.5,0.35,1.0,0.65; 0.0,0.35,0.5,0.65;",
"0; 24;",
"1,2,3",
"123451232531",
"assets/gradio/fish-RL.mp4",
],
[
"A cat is running on the grass",
"0.0,0.35,0.4,0.65; 0.6,0.35,1.0,0.65; 0.0,0.35,0.4,0.65;"
"0.6,0.35,1.0,0.65; 0.0,0.35,0.4,0.65;",
"0; 6; 12; 18; 24;",
"1,2",
"123451232530",
"assets/gradio/cat-LRLR.mp4",
],
[
"A fish swimming in the ocean",
"0.0,0.0,0.1,0.1; 0.5,0.5,1.0,1.0;",
"0; 24;",
"1, 2",
"0",
"assets/gradio/fish-TL2BR.mp4"
],
[
"A tiger walking alone down the street",
"0.0,0.0,0.1,0.1; 0.5,0.5,1.0,1.0;",
"0; 24;",
"1, 2",
"0",
"assets/gradio/tiger-TL2BR.mp4"
],
[
"A white cat walking on the grass; A yellow dog walking on the grass;",
"0.7,0.4,1.0,0.65; 0.0,0.4,0.3,0.65;",
"0; 24;",
"1,2,3",
"123451232531",
"assets/gradio/Cat2Dog.mp4",
],
],
inputs=[text_prompt_tb, bboxes_tb, frame_tb, word_prompt_indices_tb, rand_seed,out_gen_1],
outputs=None,
fn=None,
cache_examples=False,
)
clear_btn.click(
clear_btn_fn,
inputs=[],
outputs=[text_prompt_tb, bboxes_tb, frame_tb, word_prompt_indices_tb],
queue=False,
)
gen_btn.click(
gen_btn_fn,
inputs=[
text_prompt_tb,
bboxes_tb,
frame_tb,
word_prompt_indices_tb,
trailing_length,
n_spatial_steps,
n_temporal_steps,
spatial_strengthen_scale,
spatial_weaken_scale,
temporal_strengthen_scale,
temporal_weaken_scale,
rand_seed,
],
outputs=[out_gen_1],
queue=False,
)
if __name__ == "__main__":
main.launch(share=False)