Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
from .attention_processor import ( | |
Attention, | |
AttnProcessor2_0, | |
JointAttnProcessor2_0, | |
JointAttnROPEProcessor2_0, | |
AttnRopeProcessor2_0, | |
) | |
from .embeddings import SinusoidalPositionalEmbedding | |
from diffusers.models.normalization import ( | |
AdaLayerNorm, | |
AdaLayerNormContinuous, | |
AdaLayerNormZero, | |
RMSNorm, | |
) | |
logger = logging.get_logger(__name__) | |
def _chunked_feed_forward( | |
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int | |
): | |
# "feed_forward_chunk_size" can be used to save memory | |
if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
ff_output = torch.cat( | |
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
dim=chunk_dim, | |
) | |
return ff_output | |
class GatedSelfAttentionDense(nn.Module): | |
r""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = ( | |
x | |
+ self.alpha_attn.tanh() | |
* self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
) | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class TransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__( | |
self, dim, num_attention_heads, attention_head_dim, context_pre_only=False | |
): | |
super().__init__() | |
self.norm1 = AdaLayerNormZero(dim) | |
if hasattr(F, "scaled_dot_product_attention"): | |
processor = AttnProcessor2_0() | |
else: | |
raise ValueError( | |
"The current PyTorch version does not support the `scaled_dot_product_attention` function." | |
) | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=None, | |
dim_head=attention_head_dim // num_attention_heads, | |
heads=num_attention_heads, | |
out_dim=attention_head_dim, | |
context_pre_only=context_pre_only, | |
bias=True, | |
processor=processor, | |
) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
): | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, emb=temb | |
) | |
# Attention. | |
attn_output = self.attn(hidden_states=norm_hidden_states) | |
# Process attention outputs for the `hidden_states`. | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = ( | |
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
) | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward( | |
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
return hidden_states | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, | |
ada_norm_bias: Optional[int] = None, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
# We keep these boolean flags for backward-compatibility. | |
self.use_ada_layer_norm_zero = ( | |
num_embeds_ada_norm is not None | |
) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = ( | |
num_embeds_ada_norm is not None | |
) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
self.norm_type = norm_type | |
self.num_embeds_ada_norm = num_embeds_ada_norm | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding( | |
dim, max_seq_length=num_positional_embeddings | |
) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if norm_type == "ada_norm": | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_zero": | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm1 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm1 = nn.LayerNorm( | |
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps | |
) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
if norm_type == "ada_norm": | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm2 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=( | |
cross_attention_dim if not double_self_attention else None | |
), | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if norm_type == "ada_norm_continuous": | |
self.norm3 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"layer_norm", | |
) | |
elif norm_type in [ | |
"ada_norm_zero", | |
"ada_norm", | |
"layer_norm", | |
"ada_norm_continuous", | |
]: | |
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
elif norm_type == "layer_norm_i2vgen": | |
self.norm3 = None | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense( | |
dim, cross_attention_dim, num_attention_heads, attention_head_dim | |
) | |
# 5. Scale-shift for PixArt-Alpha. | |
if norm_type == "ada_norm_single": | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored." | |
) | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.norm_type == "ada_norm_zero": | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm1( | |
hidden_states, added_cond_kwargs["pooled_text_emb"] | |
) | |
elif self.norm_type == "ada_norm_single": | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Prepare GLIGEN inputs | |
cross_attention_kwargs = ( | |
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
) | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=( | |
encoder_hidden_states if self.only_cross_attention else None | |
), | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.norm_type == "ada_norm_zero": | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.norm_type == "ada_norm_single": | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1.2 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.norm_type == "ada_norm_single": | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm2( | |
hidden_states, added_cond_kwargs["pooled_text_emb"] | |
) | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.norm_type != "ada_norm_single": | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
# i2vgen doesn't have this norm 🤷♂️ | |
if self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm3( | |
hidden_states, added_cond_kwargs["pooled_text_emb"] | |
) | |
elif not self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
norm_hidden_states = ( | |
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
) | |
if self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward( | |
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.norm_type == "ada_norm_single": | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class TemporalRopeBasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block for video like data. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
time_mix_inner_dim (`int`): The number of channels for temporal attention. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
time_mix_inner_dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.is_res = dim == time_mix_inner_dim | |
self.norm_in = nn.LayerNorm(dim) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
self.ff_in = FeedForward( | |
dim, | |
dim_out=time_mix_inner_dim, | |
activation_fn="geglu", | |
) | |
processor = AttnRopeProcessor2_0() | |
self.norm1 = nn.LayerNorm(time_mix_inner_dim) | |
self.attn1 = Attention( | |
query_dim=time_mix_inner_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
cross_attention_dim=None, | |
processor=processor, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = nn.LayerNorm(time_mix_inner_dim) | |
self.attn2 = Attention( | |
query_dim=time_mix_inner_dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
processor=processor, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(time_mix_inner_dim) | |
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu") | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = None | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off | |
self._chunk_dim = 1 | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
num_frames: int, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
frame_rotary_emb=None, | |
) -> torch.Tensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
batch_frames, seq_length, channels = hidden_states.shape | |
batch_size = batch_frames // num_frames | |
hidden_states = hidden_states[None, :].reshape( | |
batch_size, num_frames, seq_length, channels | |
) | |
hidden_states = hidden_states.permute(0, 2, 1, 3) | |
hidden_states = hidden_states.reshape( | |
batch_size * seq_length, num_frames, channels | |
) | |
residual = hidden_states | |
hidden_states = self.norm_in(hidden_states) | |
if self._chunk_size is not None: | |
hidden_states = _chunked_feed_forward( | |
self.ff_in, hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
hidden_states = self.ff_in(hidden_states) | |
if self.is_res: | |
hidden_states = hidden_states + residual | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=None, | |
frame_rotary_emb=frame_rotary_emb, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = self.norm2(hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
frame_rotary_emb=frame_rotary_emb, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self._chunk_size is not None: | |
ff_output = _chunked_feed_forward( | |
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.is_res: | |
hidden_states = ff_output + hidden_states | |
else: | |
hidden_states = ff_output | |
hidden_states = hidden_states[None, :].reshape( | |
batch_size, seq_length, num_frames, channels | |
) | |
hidden_states = hidden_states.permute(0, 2, 1, 3) | |
hidden_states = hidden_states.reshape( | |
batch_size * num_frames, seq_length, channels | |
) | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |