Spaces:
Build error
Build error
Raw copy-paste
Browse files- app.py +406 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import functools
|
3 |
+
import itertools
|
4 |
+
import logging
|
5 |
+
import random
|
6 |
+
import string
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
import tensorflow as tf
|
12 |
+
import streamlit as st
|
13 |
+
from gazpacho import Soup, get
|
14 |
+
from transformers.modeling_tf_bert import TFBertForPreTraining
|
15 |
+
from transformers.tokenization_bert import PreTrainedTokenizer
|
16 |
+
from transformers import BertTokenizer, TFBertForMaskedLM
|
17 |
+
|
18 |
+
|
19 |
+
DEFAULT_QUERY = "Machines will take over the world soon"
|
20 |
+
N_RHYMES = 10
|
21 |
+
ITER_FACTOR = 5
|
22 |
+
|
23 |
+
|
24 |
+
LANGUAGE = st.sidebar.radio("Language", ["english", "dutch"],0)
|
25 |
+
if LANGUAGE == "english":
|
26 |
+
MODEL_PATH = "./data/bert-large-cased-whole-word-masking-finetuned-squad"
|
27 |
+
elif LANGUAGE == "dutch":
|
28 |
+
MODEL_PATH = "./data/wietsedv/bert-base-dutch-cased"
|
29 |
+
else:
|
30 |
+
raise NotImplementedError(f"Unsupported language ({LANGUAGE}) expected 'english' or 'dutch'.")
|
31 |
+
|
32 |
+
def main():
|
33 |
+
st.markdown(
|
34 |
+
"<sup>Created with "
|
35 |
+
"[Datamuse](https://www.datamuse.com/api/), "
|
36 |
+
"[Mick's rijmwoordenboek](https://rijmwoordenboek.nl)"
|
37 |
+
"[Hugging Face](https://huggingface.co/), "
|
38 |
+
"[Streamlit](https://streamlit.io/) and "
|
39 |
+
"[App Engine](https://cloud.google.com/appengine/)."
|
40 |
+
" Read our [blog](https://blog.godatadriven.com/rhyme-with-ai) "
|
41 |
+
"or check the "
|
42 |
+
"[source](https://github.com/godatadriven/rhyme-with-ai).</sup>",
|
43 |
+
unsafe_allow_html=True,
|
44 |
+
)
|
45 |
+
st.title("Rhyme with AI")
|
46 |
+
query = get_query()
|
47 |
+
if not query:
|
48 |
+
query = DEFAULT_QUERY
|
49 |
+
rhyme_words_options = query_rhyme_words(query, n_rhymes=N_RHYMES,language=LANGUAGE)
|
50 |
+
if rhyme_words_options:
|
51 |
+
start_rhyming(query, rhyme_words_options)
|
52 |
+
else:
|
53 |
+
st.write("No rhyme words found")
|
54 |
+
|
55 |
+
|
56 |
+
def get_query():
|
57 |
+
q = sanitize(
|
58 |
+
st.text_input("Write your first line and press ENTER to rhyme:", DEFAULT_QUERY)
|
59 |
+
)
|
60 |
+
if not q:
|
61 |
+
return DEFAULT_QUERY
|
62 |
+
return q
|
63 |
+
|
64 |
+
|
65 |
+
def start_rhyming(query, rhyme_words_options):
|
66 |
+
st.markdown("## My Suggestions:")
|
67 |
+
|
68 |
+
progress_bar = st.progress(0)
|
69 |
+
status_text = st.empty()
|
70 |
+
max_iter = len(query.split()) * ITER_FACTOR
|
71 |
+
|
72 |
+
rhyme_words = rhyme_words_options[:N_RHYMES]
|
73 |
+
|
74 |
+
model, tokenizer = load_model(MODEL_PATH)
|
75 |
+
sentence_generator = RhymeGenerator(model, tokenizer)
|
76 |
+
sentence_generator.start(query, rhyme_words)
|
77 |
+
|
78 |
+
current_sentences = [" " for _ in range(N_RHYMES)]
|
79 |
+
for i in range(max_iter):
|
80 |
+
previous_sentences = copy.deepcopy(current_sentences)
|
81 |
+
current_sentences = sentence_generator.mutate()
|
82 |
+
display_output(status_text, query, current_sentences, previous_sentences)
|
83 |
+
progress_bar.progress(i / (max_iter - 1))
|
84 |
+
st.balloons()
|
85 |
+
|
86 |
+
|
87 |
+
@st.cache(allow_output_mutation=True)
|
88 |
+
def load_model(model_path):
|
89 |
+
return (
|
90 |
+
TFBertForMaskedLM.from_pretrained(model_path),
|
91 |
+
BertTokenizer.from_pretrained(model_path),
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
def display_output(status_text, query, current_sentences, previous_sentences):
|
96 |
+
print_sentences = []
|
97 |
+
for new, old in zip(current_sentences, previous_sentences):
|
98 |
+
formatted = color_new_words(new, old)
|
99 |
+
after_comma = "<li>" + formatted.split(",")[1][:-2] + "</li>"
|
100 |
+
print_sentences.append(after_comma)
|
101 |
+
status_text.markdown(
|
102 |
+
query + ",<br>" + "".join(print_sentences), unsafe_allow_html=True
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
class RhymeGenerator:
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
model: TFBertForPreTraining,
|
110 |
+
tokenizer: PreTrainedTokenizer,
|
111 |
+
token_weighter: TokenWeighter = None,
|
112 |
+
):
|
113 |
+
"""Generate rhymes.
|
114 |
+
|
115 |
+
Parameters
|
116 |
+
----------
|
117 |
+
model : Model for masked language modelling
|
118 |
+
tokenizer : Tokenizer for model
|
119 |
+
token_weighter : Class that weighs tokens
|
120 |
+
"""
|
121 |
+
|
122 |
+
self.model = model
|
123 |
+
self.tokenizer = tokenizer
|
124 |
+
if token_weighter is None:
|
125 |
+
token_weighter = TokenWeighter(tokenizer)
|
126 |
+
self.token_weighter = token_weighter
|
127 |
+
self._logger = logging.getLogger(__name__)
|
128 |
+
|
129 |
+
self.tokenized_rhymes_ = None
|
130 |
+
self.position_probas_ = None
|
131 |
+
|
132 |
+
# Easy access.
|
133 |
+
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
|
134 |
+
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
|
135 |
+
self.mask_token_id = self.tokenizer.mask_token_id
|
136 |
+
|
137 |
+
def start(self, query: str, rhyme_words: List[str]) -> None:
|
138 |
+
"""Start the sentence generator.
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
----------
|
142 |
+
query : Seed sentence
|
143 |
+
rhyme_words : Rhyme words for next sentence
|
144 |
+
"""
|
145 |
+
# TODO: What if no content?
|
146 |
+
self._logger.info("Got sentence %s", query)
|
147 |
+
tokenized_rhymes = [
|
148 |
+
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
|
149 |
+
]
|
150 |
+
# Make same length.
|
151 |
+
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
|
152 |
+
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
|
153 |
+
)
|
154 |
+
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
|
155 |
+
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
|
156 |
+
|
157 |
+
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
|
158 |
+
"""Initialize the rhymes.
|
159 |
+
|
160 |
+
* Tokenize input
|
161 |
+
* Append a comma if the sentence does not end in it (might add better predictions as it
|
162 |
+
shows the two sentence parts are related)
|
163 |
+
* Make second line as long as the original
|
164 |
+
* Add a period
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
----------
|
168 |
+
query : First line
|
169 |
+
rhyme_word : Last word for second line
|
170 |
+
|
171 |
+
Returns
|
172 |
+
-------
|
173 |
+
Tokenized rhyme lines
|
174 |
+
"""
|
175 |
+
|
176 |
+
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
|
177 |
+
rhyme_word_token_ids = self.tokenizer.encode(
|
178 |
+
rhyme_word, add_special_tokens=False
|
179 |
+
)
|
180 |
+
|
181 |
+
if query_token_ids[-1] != self.comma_token_id:
|
182 |
+
query_token_ids.append(self.comma_token_id)
|
183 |
+
|
184 |
+
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
|
185 |
+
return (
|
186 |
+
query_token_ids
|
187 |
+
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
|
188 |
+
+ rhyme_word_token_ids
|
189 |
+
+ [self.period_token_id]
|
190 |
+
)
|
191 |
+
|
192 |
+
def mutate(self):
|
193 |
+
"""Mutate the current rhymes.
|
194 |
+
|
195 |
+
Returns
|
196 |
+
-------
|
197 |
+
Mutated rhymes
|
198 |
+
"""
|
199 |
+
self.tokenized_rhymes_ = self._mutate(
|
200 |
+
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
|
201 |
+
)
|
202 |
+
|
203 |
+
rhymes = []
|
204 |
+
for i in range(len(self.tokenized_rhymes_)):
|
205 |
+
rhymes.append(
|
206 |
+
self.tokenizer.convert_tokens_to_string(
|
207 |
+
self.tokenizer.convert_ids_to_tokens(
|
208 |
+
self.tokenized_rhymes_[i], skip_special_tokens=True
|
209 |
+
)
|
210 |
+
)
|
211 |
+
)
|
212 |
+
return rhymes
|
213 |
+
|
214 |
+
def _mutate(
|
215 |
+
self,
|
216 |
+
tokenized_rhymes: np.ndarray,
|
217 |
+
position_probas: np.ndarray,
|
218 |
+
token_id_probas: np.ndarray,
|
219 |
+
) -> np.ndarray:
|
220 |
+
|
221 |
+
replacements = []
|
222 |
+
for i in range(tokenized_rhymes.shape[0]):
|
223 |
+
mask_idx, masked_token_ids = self._mask_token(
|
224 |
+
tokenized_rhymes[i], position_probas[i]
|
225 |
+
)
|
226 |
+
tokenized_rhymes[i] = masked_token_ids
|
227 |
+
replacements.append(mask_idx)
|
228 |
+
|
229 |
+
predictions = self._predict_masked_tokens(tokenized_rhymes)
|
230 |
+
|
231 |
+
for i, token_ids in enumerate(tokenized_rhymes):
|
232 |
+
replace_ix = replacements[i]
|
233 |
+
token_ids[replace_ix] = self._draw_replacement(
|
234 |
+
predictions[i], token_id_probas, replace_ix
|
235 |
+
)
|
236 |
+
tokenized_rhymes[i] = token_ids
|
237 |
+
|
238 |
+
return tokenized_rhymes
|
239 |
+
|
240 |
+
def _mask_token(self, token_ids, position_probas):
|
241 |
+
"""Mask line and return index to update."""
|
242 |
+
token_ids = self._mask_repeats(token_ids, position_probas)
|
243 |
+
ix = self._locate_mask(token_ids, position_probas)
|
244 |
+
token_ids[ix] = self.mask_token_id
|
245 |
+
return ix, token_ids
|
246 |
+
|
247 |
+
def _locate_mask(self, token_ids, position_probas):
|
248 |
+
"""Update masks or a random token."""
|
249 |
+
if self.mask_token_id in token_ids:
|
250 |
+
# Already masks present, just return the last.
|
251 |
+
# We used to return thee first but this returns worse predictions.
|
252 |
+
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
|
253 |
+
return np.random.choice(range(len(position_probas)), p=position_probas)
|
254 |
+
|
255 |
+
def _mask_repeats(self, token_ids, position_probas):
|
256 |
+
"""Repeated tokens are generally of less quality."""
|
257 |
+
repeats = [
|
258 |
+
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
|
259 |
+
]
|
260 |
+
for ii in repeats:
|
261 |
+
if position_probas[ii] > 0:
|
262 |
+
token_ids[ii] = self.mask_token_id
|
263 |
+
if position_probas[ii + 1] > 0:
|
264 |
+
token_ids[ii + 1] = self.mask_token_id
|
265 |
+
return token_ids
|
266 |
+
|
267 |
+
def _predict_masked_tokens(self, tokenized_rhymes):
|
268 |
+
return self.model(tf.constant(tokenized_rhymes))[0]
|
269 |
+
|
270 |
+
def _draw_replacement(self, predictions, token_probas, replace_ix):
|
271 |
+
"""Get probability, weigh and draw."""
|
272 |
+
# TODO (HG): Can't we softmax when calling the model?
|
273 |
+
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
|
274 |
+
probas /= probas.sum()
|
275 |
+
return np.random.choice(range(len(probas)), p=probas)
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
def query_rhyme_words(sentence: str, n_rhymes: int, language:str="english") -> List[str]:
|
280 |
+
"""Returns a list of rhyme words for a sentence.
|
281 |
+
|
282 |
+
Parameters
|
283 |
+
----------
|
284 |
+
sentence : Sentence that may end with punctuation
|
285 |
+
n_rhymes : Maximum number of rhymes to return
|
286 |
+
|
287 |
+
Returns
|
288 |
+
-------
|
289 |
+
List[str] -- List of words that rhyme with the final word
|
290 |
+
"""
|
291 |
+
last_word = find_last_word(sentence)
|
292 |
+
if language == "english":
|
293 |
+
return query_datamuse_api(last_word, n_rhymes)
|
294 |
+
elif language == "dutch":
|
295 |
+
return mick_rijmwoordenboek(last_word, n_rhymes)
|
296 |
+
else:
|
297 |
+
raise NotImplementedError(f"Unsupported language ({language}) expected 'english' or 'dutch'.")
|
298 |
+
|
299 |
+
|
300 |
+
def query_datamuse_api(word: str, n_rhymes: Optional[int] = None) -> List[str]:
|
301 |
+
"""Query the DataMuse API.
|
302 |
+
|
303 |
+
Parameters
|
304 |
+
----------
|
305 |
+
word : Word to rhyme with
|
306 |
+
n_rhymes : Max rhymes to return
|
307 |
+
|
308 |
+
Returns
|
309 |
+
-------
|
310 |
+
Rhyme words
|
311 |
+
"""
|
312 |
+
out = requests.get(
|
313 |
+
"https://api.datamuse.com/words", params={"rel_rhy": word}
|
314 |
+
).json()
|
315 |
+
words = [_["word"] for _ in out]
|
316 |
+
if n_rhymes is None:
|
317 |
+
return words
|
318 |
+
return words[:n_rhymes]
|
319 |
+
|
320 |
+
|
321 |
+
@functools.lru_cache(maxsize=128, typed=False)
|
322 |
+
def mick_rijmwoordenboek(word: str, n_words: int):
|
323 |
+
url = f"https://rijmwoordenboek.nl/rijm/{word}"
|
324 |
+
html = get(url)
|
325 |
+
soup = Soup(html)
|
326 |
+
|
327 |
+
results = soup.find("div", {"id": "rhymeResultsWords"}).html.split("<br />")
|
328 |
+
|
329 |
+
# clean up
|
330 |
+
results = [r.replace("\n", "").replace(" ", "") for r in results]
|
331 |
+
|
332 |
+
# filter html and empty strings
|
333 |
+
results = [r for r in results if ("<" not in r) and (len(r) > 0)]
|
334 |
+
|
335 |
+
return random.sample(results, min(len(results), n_words))
|
336 |
+
|
337 |
+
|
338 |
+
import numpy as np
|
339 |
+
|
340 |
+
|
341 |
+
class TokenWeighter:
|
342 |
+
def __init__(self, tokenizer):
|
343 |
+
self.tokenizer_ = tokenizer
|
344 |
+
self.proba = self.get_token_proba()
|
345 |
+
|
346 |
+
def get_token_proba(self):
|
347 |
+
valid_token_mask = self._filter_short_partial(self.tokenizer_.vocab)
|
348 |
+
return valid_token_mask
|
349 |
+
|
350 |
+
def _filter_short_partial(self, vocab):
|
351 |
+
valid_token_ids = [v for k, v in vocab.items() if len(k) > 1 and "#" not in k]
|
352 |
+
is_valid = np.zeros(len(vocab.keys()))
|
353 |
+
is_valid[valid_token_ids] = 1
|
354 |
+
return is_valid
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
def color_new_words(new: str, old: str, color: str = "#eefa66") -> str:
|
359 |
+
"""Color new words in strings with a span."""
|
360 |
+
|
361 |
+
def find_diff(new_, old_):
|
362 |
+
return [ii for ii, (n, o) in enumerate(zip(new_, old_)) if n != o]
|
363 |
+
|
364 |
+
new_words = new.split()
|
365 |
+
old_words = old.split()
|
366 |
+
forward = find_diff(new_words, old_words)
|
367 |
+
backward = find_diff(new_words[::-1], old_words[::-1])
|
368 |
+
|
369 |
+
if not forward or not backward:
|
370 |
+
# No difference
|
371 |
+
return new
|
372 |
+
|
373 |
+
start, end = forward[0], len(new_words) - backward[0]
|
374 |
+
return (
|
375 |
+
" ".join(new_words[:start])
|
376 |
+
+ " "
|
377 |
+
+ f'<span style="background-color: {color}">'
|
378 |
+
+ " ".join(new_words[start:end])
|
379 |
+
+ "</span>"
|
380 |
+
+ " "
|
381 |
+
+ " ".join(new_words[end:])
|
382 |
+
)
|
383 |
+
|
384 |
+
|
385 |
+
def find_last_word(s):
|
386 |
+
"""Find the last word in a string."""
|
387 |
+
# Note: will break on \n, \r, etc.
|
388 |
+
alpha_only_sentence = "".join([c for c in s if (c.isalpha() or (c == " "))]).strip()
|
389 |
+
return alpha_only_sentence.split()[-1]
|
390 |
+
|
391 |
+
|
392 |
+
def pairwise(iterable):
|
393 |
+
"""s -> (s0,s1), (s1,s2), (s2, s3), ..."""
|
394 |
+
# https://stackoverflow.com/questions/5434891/iterate-a-list-as-pair-current-next-in-python
|
395 |
+
a, b = itertools.tee(iterable)
|
396 |
+
next(b, None)
|
397 |
+
return zip(a, b)
|
398 |
+
|
399 |
+
|
400 |
+
def sanitize(s):
|
401 |
+
"""Remove punctuation from a string."""
|
402 |
+
return s.translate(str.maketrans("", "", string.punctuation))
|
403 |
+
|
404 |
+
|
405 |
+
if __name__ == "__main__":
|
406 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gazpacho
|
2 |
+
numpy
|
3 |
+
requests
|
4 |
+
tensorflow
|
5 |
+
transformers
|