rhyme-with-ai / app.py
hgrif's picture
Add rhyme.py
5ddb621
raw
history blame
9.42 kB
import copy
import logging
from typing import List
import numpy as np
import tensorflow as tf
import streamlit as st
from transformers import BertTokenizer, TFAutoModelForMaskedLM
from rhyme_with_ai.utils import color_new_words, pairwise, sanitize
from rhyme_with_ai.token_weighter import TokenWeighter
DEFAULT_QUERY = "Machines will take over the world soon"
N_RHYMES = 10
ITER_FACTOR = 5
LANGUAGE = st.sidebar.radio("Language", ["english", "dutch"],0)
if LANGUAGE == "english":
MODEL_PATH = "bert-large-cased-whole-word-masking"
elif LANGUAGE == "dutch":
MODEL_PATH = "GroNLP/bert-base-dutch-cased"
else:
raise NotImplementedError(f"Unsupported language ({LANGUAGE}) expected 'english' or 'dutch'.")
def main():
st.markdown(
"<sup>Created with "
"[Datamuse](https://www.datamuse.com/api/), "
"[Mick's rijmwoordenboek](https://rijmwoordenboek.nl), "
"[Hugging Face](https://huggingface.co/), "
"[Streamlit](https://streamlit.io/) and "
"[App Engine](https://cloud.google.com/appengine/)."
" Read our [blog](https://blog.godatadriven.com/rhyme-with-ai) "
"or check the "
"[source](https://github.com/godatadriven/rhyme-with-ai).</sup>",
unsafe_allow_html=True,
)
st.title("Rhyme with AI")
query = get_query()
if not query:
query = DEFAULT_QUERY
rhyme_words_options = query_rhyme_words(query, n_rhymes=N_RHYMES,language=LANGUAGE)
if rhyme_words_options:
logging.getLogger(__name__).info("Got rhyme words: %s", rhyme_words_options)
start_rhyming(query, rhyme_words_options)
else:
st.write("No rhyme words found")
def get_query():
q = sanitize(
st.text_input("Write your first line and press ENTER to rhyme:", DEFAULT_QUERY)
)
if not q:
return DEFAULT_QUERY
return q
def start_rhyming(query, rhyme_words_options):
st.markdown("## My Suggestions:")
progress_bar = st.progress(0)
status_text = st.empty()
max_iter = len(query.split()) * ITER_FACTOR
rhyme_words = rhyme_words_options[:N_RHYMES]
model, tokenizer = load_model(MODEL_PATH)
sentence_generator = RhymeGenerator(model, tokenizer)
sentence_generator.start(query, rhyme_words)
current_sentences = [" " for _ in range(N_RHYMES)]
for i in range(max_iter):
previous_sentences = copy.deepcopy(current_sentences)
current_sentences = sentence_generator.mutate()
display_output(status_text, query, current_sentences, previous_sentences)
progress_bar.progress(i / (max_iter - 1))
st.balloons()
@st.cache(allow_output_mutation=True)
def load_model(model_path):
return (
TFAutoModelForMaskedLM.from_pretrained(model_path),
BertTokenizer.from_pretrained(model_path),
)
def display_output(status_text, query, current_sentences, previous_sentences):
print_sentences = []
for new, old in zip(current_sentences, previous_sentences):
formatted = color_new_words(new, old)
after_comma = "<li>" + formatted.split(",")[1][:-2] + "</li>"
print_sentences.append(after_comma)
status_text.markdown(
query + ",<br>" + "".join(print_sentences), unsafe_allow_html=True
)
class RhymeGenerator:
def __init__(
self,
model: TFAutoModelForMaskedLM,
tokenizer: BertTokenizer,
token_weighter: TokenWeighter = None,
):
"""Generate rhymes.
Parameters
----------
model : Model for masked language modelling
tokenizer : Tokenizer for model
token_weighter : Class that weighs tokens
"""
self.model = model
self.tokenizer = tokenizer
if token_weighter is None:
token_weighter = TokenWeighter(tokenizer)
self.token_weighter = token_weighter
self._logger = logging.getLogger(__name__)
self.tokenized_rhymes_ = None
self.position_probas_ = None
# Easy access.
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
self.mask_token_id = self.tokenizer.mask_token_id
def start(self, query: str, rhyme_words: List[str]) -> None:
"""Start the sentence generator.
Parameters
----------
query : Seed sentence
rhyme_words : Rhyme words for next sentence
"""
# TODO: What if no content?
self._logger.info("Got sentence %s", query)
tokenized_rhymes = [
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
]
# Make same length.
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
)
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
"""Initialize the rhymes.
* Tokenize input
* Append a comma if the sentence does not end in it (might add better predictions as it
shows the two sentence parts are related)
* Make second line as long as the original
* Add a period
Parameters
----------
query : First line
rhyme_word : Last word for second line
Returns
-------
Tokenized rhyme lines
"""
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
rhyme_word_token_ids = self.tokenizer.encode(
rhyme_word, add_special_tokens=False
)
if query_token_ids[-1] != self.comma_token_id:
query_token_ids.append(self.comma_token_id)
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
return (
query_token_ids
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
+ rhyme_word_token_ids
+ [self.period_token_id]
)
def mutate(self):
"""Mutate the current rhymes.
Returns
-------
Mutated rhymes
"""
self.tokenized_rhymes_ = self._mutate(
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
)
rhymes = []
for i in range(len(self.tokenized_rhymes_)):
rhymes.append(
self.tokenizer.convert_tokens_to_string(
self.tokenizer.convert_ids_to_tokens(
self.tokenized_rhymes_[i], skip_special_tokens=True
)
)
)
return rhymes
def _mutate(
self,
tokenized_rhymes: np.ndarray,
position_probas: np.ndarray,
token_id_probas: np.ndarray,
) -> np.ndarray:
replacements = []
for i in range(tokenized_rhymes.shape[0]):
mask_idx, masked_token_ids = self._mask_token(
tokenized_rhymes[i], position_probas[i]
)
tokenized_rhymes[i] = masked_token_ids
replacements.append(mask_idx)
predictions = self._predict_masked_tokens(tokenized_rhymes)
for i, token_ids in enumerate(tokenized_rhymes):
replace_ix = replacements[i]
token_ids[replace_ix] = self._draw_replacement(
predictions[i], token_id_probas, replace_ix
)
tokenized_rhymes[i] = token_ids
return tokenized_rhymes
def _mask_token(self, token_ids, position_probas):
"""Mask line and return index to update."""
token_ids = self._mask_repeats(token_ids, position_probas)
ix = self._locate_mask(token_ids, position_probas)
token_ids[ix] = self.mask_token_id
return ix, token_ids
def _locate_mask(self, token_ids, position_probas):
"""Update masks or a random token."""
if self.mask_token_id in token_ids:
# Already masks present, just return the last.
# We used to return thee first but this returns worse predictions.
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
return np.random.choice(range(len(position_probas)), p=position_probas)
def _mask_repeats(self, token_ids, position_probas):
"""Repeated tokens are generally of less quality."""
repeats = [
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
]
for ii in repeats:
if position_probas[ii] > 0:
token_ids[ii] = self.mask_token_id
if position_probas[ii + 1] > 0:
token_ids[ii + 1] = self.mask_token_id
return token_ids
def _predict_masked_tokens(self, tokenized_rhymes):
return self.model(tf.constant(tokenized_rhymes))[0]
def _draw_replacement(self, predictions, token_probas, replace_ix):
"""Get probability, weigh and draw."""
# TODO (HG): Can't we softmax when calling the model?
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
probas /= probas.sum()
return np.random.choice(range(len(probas)), p=probas)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()