Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Big refactor
Browse files- Makefile +11 -0
- README.md +1 -1
- app.py +0 -187
- pyproject.toml +16 -0
- src/__init__.py +0 -0
- src/app.py +74 -0
- src/hub_utils.py +62 -0
- src/model_utils.py +85 -0
Makefile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
check_dirs := src
|
2 |
+
|
3 |
+
# this target runs checks on all files
|
4 |
+
quality:
|
5 |
+
black --required-version 23 --check $(check_dirs)
|
6 |
+
ruff $(check_dirs)
|
7 |
+
|
8 |
+
# Format source code automatically and check is there are any problems left that need manual fixing
|
9 |
+
style:
|
10 |
+
black --required-version 23 $(check_dirs)
|
11 |
+
ruff $(check_dirs) --fix
|
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: pink
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.40.1
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.40.1
|
8 |
+
app_file: src/app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
app.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import webbrowser
|
4 |
-
import pandas as pd
|
5 |
-
import gradio as gr
|
6 |
-
from huggingface_hub import HfApi
|
7 |
-
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError
|
8 |
-
from accelerate.commands.estimate import create_empty_model, check_has_model
|
9 |
-
from accelerate.utils import convert_bytes, calculate_maximum_sizes
|
10 |
-
from urllib.parse import urlparse
|
11 |
-
|
12 |
-
# We need to store them as globals because gradio doesn't have a way for us to pass them in to the button
|
13 |
-
HAS_DISCUSSION = True
|
14 |
-
MODEL_NAME = None
|
15 |
-
LIBRARY = None
|
16 |
-
USER_TOKEN = None
|
17 |
-
TOKEN = os.environ.get("HUGGINGFACE_API_LOGIN", None)
|
18 |
-
|
19 |
-
def translate_llama2(text):
|
20 |
-
"Translates llama-2 to its hf counterpart"
|
21 |
-
if not text.endswith("-hf"):
|
22 |
-
return text + "-hf"
|
23 |
-
return text
|
24 |
-
|
25 |
-
def check_for_discussion(model_name:str):
|
26 |
-
"Checks if an automated discussion has been opened on the model by `model-sizer-bot`"
|
27 |
-
global TOKEN
|
28 |
-
api = HfApi(token=TOKEN)
|
29 |
-
discussions = list(api.get_repo_discussions(model_name))
|
30 |
-
return any(discussion.title == "[AUTOMATED] Model Memory Requirements" and discussion.author == "model-sizer-bot" for discussion in discussions)
|
31 |
-
|
32 |
-
def report_results():
|
33 |
-
"Reports the results of a memory calculation to the model's discussion page, and opens a new tab to it afterwards"
|
34 |
-
global MODEL_NAME, LIBRARY, TOKEN, USER_TOKEN
|
35 |
-
api = HfApi(token=TOKEN)
|
36 |
-
results, data = calculate_memory(MODEL_NAME, LIBRARY, ["fp32", "fp16", "int8", "int4"], access_token=USER_TOKEN, raw=True)
|
37 |
-
minimum = data[0]
|
38 |
-
|
39 |
-
USER_TOKEN = None
|
40 |
-
post = f"""# Model Memory Requirements\n
|
41 |
-
|
42 |
-
You will need about {minimum[1]} VRAM to load this model for inference, and {minimum[3]} VRAM to train it using Adam.
|
43 |
-
|
44 |
-
These calculations were measured from the [Model Memory Utility Space](https://hf.co/spaces/hf-accelerate/model-memory-utility) on the Hub.
|
45 |
-
|
46 |
-
The minimum recommended vRAM needed for this model assumes using [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) and is denoted by the size of the "largest layer".
|
47 |
-
When performing inference, expect to add up to an additional 20% to this, as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). More tests will be performed in the future to get a more accurate benchmark for each model.
|
48 |
-
|
49 |
-
When training with `Adam`, you can expect roughly 4x the reported results to be used. (1x for the model, 1x for the gradients, and 2x for the optimizer).
|
50 |
-
|
51 |
-
## Results:
|
52 |
-
|
53 |
-
{results}
|
54 |
-
"""
|
55 |
-
discussion = api.create_discussion(MODEL_NAME, "[AUTOMATED] Model Memory Requirements", description=post)
|
56 |
-
webbrowser.open_new_tab(discussion.url)
|
57 |
-
|
58 |
-
def extract_from_url(name:str):
|
59 |
-
"Checks if `name` is a URL, and if so converts it to a model name"
|
60 |
-
is_url = False
|
61 |
-
try:
|
62 |
-
result = urlparse(name)
|
63 |
-
is_url = all([result.scheme, result.netloc])
|
64 |
-
except:
|
65 |
-
is_url = False
|
66 |
-
# Pass through if not a URL
|
67 |
-
if not is_url:
|
68 |
-
return name
|
69 |
-
else:
|
70 |
-
path = result.path
|
71 |
-
return path[1:]
|
72 |
-
|
73 |
-
def calculate_memory(model_name:str, library:str, options:list, access_token:str, raw=False):
|
74 |
-
"Calculates the memory usage for a model"
|
75 |
-
if "meta-llama" in model_name:
|
76 |
-
model_name = translate_llama2(model_name)
|
77 |
-
if library == "auto":
|
78 |
-
library = None
|
79 |
-
model_name = extract_from_url(model_name)
|
80 |
-
try:
|
81 |
-
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token)
|
82 |
-
except GatedRepoError:
|
83 |
-
raise gr.Error(f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. ")
|
84 |
-
except RepositoryNotFoundError:
|
85 |
-
raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.")
|
86 |
-
except ValueError as e:
|
87 |
-
raise gr.Error(f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)")
|
88 |
-
except (RuntimeError, OSError) as e:
|
89 |
-
library = check_has_model(e)
|
90 |
-
if library != "unknown":
|
91 |
-
raise gr.Error(f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo.")
|
92 |
-
raise gr.Error(f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`")
|
93 |
-
except ImportError:
|
94 |
-
# hacky way to check if it works with `trust_remote_code=False`
|
95 |
-
model = create_empty_model(model_name, library_name=library, trust_remote_code=False, access_token=access_token)
|
96 |
-
except Exception as e:
|
97 |
-
raise gr.Error(f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`")
|
98 |
-
total_size, largest_layer = calculate_maximum_sizes(model)
|
99 |
-
|
100 |
-
data = []
|
101 |
-
|
102 |
-
title = f"Memory Usage for '{model_name}'"
|
103 |
-
for dtype in options:
|
104 |
-
dtype_total_size = total_size
|
105 |
-
dtype_largest_layer = largest_layer[0]
|
106 |
-
if dtype in ("fp16", "bf16", "float16/bfloat16"):
|
107 |
-
dtype_total_size /= 2
|
108 |
-
dtype_largest_layer /= 2
|
109 |
-
elif dtype == "int8":
|
110 |
-
dtype_total_size /= 4
|
111 |
-
dtype_largest_layer /= 4
|
112 |
-
elif dtype == "int4":
|
113 |
-
dtype_total_size /= 8
|
114 |
-
dtype_largest_layer /= 8
|
115 |
-
dtype_training_size = convert_bytes(dtype_total_size * 4)
|
116 |
-
dtype_total_size = convert_bytes(dtype_total_size)
|
117 |
-
dtype_largest_layer = convert_bytes(dtype_largest_layer)
|
118 |
-
data.append({
|
119 |
-
"dtype": dtype,
|
120 |
-
"Largest Layer or Residual Group": dtype_largest_layer,
|
121 |
-
"Total Size": dtype_total_size,
|
122 |
-
"Training using Adam": dtype_training_size
|
123 |
-
})
|
124 |
-
global HAS_DISCUSSION, MODEL_NAME, LIBRARY
|
125 |
-
HAS_DISCUSSION = check_for_discussion(model_name)
|
126 |
-
MODEL_NAME = model_name
|
127 |
-
LIBRARY = library
|
128 |
-
|
129 |
-
if raw:
|
130 |
-
return pd.DataFrame(data).to_markdown(index=False), data
|
131 |
-
|
132 |
-
results = [
|
133 |
-
f'## {title}',
|
134 |
-
gr.update(visible=True, value=pd.DataFrame(data)),
|
135 |
-
gr.update(visible=not HAS_DISCUSSION)
|
136 |
-
]
|
137 |
-
return results
|
138 |
-
|
139 |
-
with gr.Blocks() as demo:
|
140 |
-
with gr.Column():
|
141 |
-
gr.Markdown(
|
142 |
-
"""<img src="https://huggingface.co/spaces/hf-accelerate/model-memory-usage/resolve/main/measure_model_size.png" style="float: left;" width="250" height="250"><h1>🤗 Model Memory Calculator</h1>
|
143 |
-
|
144 |
-
This tool will help you calculate how much vRAM is needed to train and perform big model inference
|
145 |
-
on a model hosted on the 🤗 Hugging Face Hub. The minimum recommended vRAM needed for a model
|
146 |
-
is denoted as the size of the "largest layer", and training of a model is roughly 4x its size (for Adam).
|
147 |
-
|
148 |
-
These calculations are accurate within a few percent at most, such as `bert-base-cased` being 413.68 MB and the calculator estimating 413.18 MB.
|
149 |
-
|
150 |
-
When performing inference, expect to add up to an additional 20% to this as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/).
|
151 |
-
More tests will be performed in the future to get a more accurate benchmark for each model.
|
152 |
-
|
153 |
-
Currently this tool supports all models hosted that use `transformers` and `timm`.
|
154 |
-
|
155 |
-
To use this tool pass in the URL or model name of the model you want to calculate the memory usage for,
|
156 |
-
select which framework it originates from ("auto" will try and detect it from the model metadata), and
|
157 |
-
what precisions you want to use."""
|
158 |
-
)
|
159 |
-
out_text = gr.Markdown()
|
160 |
-
out = gr.DataFrame(
|
161 |
-
headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"],
|
162 |
-
interactive=False,
|
163 |
-
visible=False,
|
164 |
-
)
|
165 |
-
with gr.Row():
|
166 |
-
inp = gr.Textbox(label="Model Name or URL", value="bert-base-cased")
|
167 |
-
with gr.Row():
|
168 |
-
library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto")
|
169 |
-
options = gr.CheckboxGroup(
|
170 |
-
["float32", "float16/bfloat16", "int8", "int4"],
|
171 |
-
value="float32",
|
172 |
-
label="Model Precision",
|
173 |
-
)
|
174 |
-
access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)")
|
175 |
-
with gr.Row():
|
176 |
-
btn = gr.Button("Calculate Memory Usage")
|
177 |
-
post_to_hub = gr.Button(value = "Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False)
|
178 |
-
USER_TOKEN = access_token
|
179 |
-
|
180 |
-
btn.click(
|
181 |
-
calculate_memory, inputs=[inp, library, options, access_token], outputs=[out_text, out, post_to_hub],
|
182 |
-
)
|
183 |
-
|
184 |
-
post_to_hub.click(report_results).then(lambda: gr.Button.update(visible=False), outputs=post_to_hub)
|
185 |
-
|
186 |
-
|
187 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pyproject.toml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.black]
|
2 |
+
line-length = 119
|
3 |
+
target-version = ['py37']
|
4 |
+
|
5 |
+
[tool.ruff]
|
6 |
+
# Never enforce `E501` (line length violations).
|
7 |
+
ignore = ["E501", "E741", "W605"]
|
8 |
+
select = ["E", "F", "I", "W"]
|
9 |
+
line-length = 119
|
10 |
+
|
11 |
+
# Ignore import violations in all `__init__.py` files.
|
12 |
+
[tool.ruff.per-file-ignores]
|
13 |
+
"__init__.py" = ["E402", "F401", "F403", "F811"]
|
14 |
+
|
15 |
+
[tool.ruff.isort]
|
16 |
+
lines-after-imports = 2
|
src/__init__.py
ADDED
File without changes
|
src/app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
from .hub_utils import check_for_discussion, report_results
|
5 |
+
from .model_utils import calculate_memory, get_model
|
6 |
+
|
7 |
+
|
8 |
+
# We need to store them as globals because gradio doesn't have a way for us to pass them in to the button
|
9 |
+
MODEL = None
|
10 |
+
|
11 |
+
|
12 |
+
def get_results(model_name: str, library: str, options: list, access_token: str):
|
13 |
+
global MODEL
|
14 |
+
MODEL = get_model(model_name, library, access_token)
|
15 |
+
has_discussion = check_for_discussion(model_name)
|
16 |
+
title = f"## Memory usage for '{model_name}'"
|
17 |
+
data = calculate_memory(MODEL, options)
|
18 |
+
return [title, gr.update(visible=True, value=pd.DataFrame(data)), gr.update(visible=not has_discussion)]
|
19 |
+
|
20 |
+
|
21 |
+
with gr.Blocks() as demo:
|
22 |
+
with gr.Column():
|
23 |
+
gr.Markdown(
|
24 |
+
"""<img src="https://huggingface.co/spaces/hf-accelerate/model-memory-usage/resolve/main/measure_model_size.png" style="float: left;" width="250" height="250"><h1>🤗 Model Memory Calculator</h1>
|
25 |
+
|
26 |
+
This tool will help you calculate how much vRAM is needed to train and perform big model inference
|
27 |
+
on a model hosted on the 🤗 Hugging Face Hub. The minimum recommended vRAM needed for a model
|
28 |
+
is denoted as the size of the "largest layer", and training of a model is roughly 4x its size (for Adam).
|
29 |
+
|
30 |
+
These calculations are accurate within a few percent at most, such as `bert-base-cased` being 413.68 MB and the calculator estimating 413.18 MB.
|
31 |
+
|
32 |
+
When performing inference, expect to add up to an additional 20% to this as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/).
|
33 |
+
More tests will be performed in the future to get a more accurate benchmark for each model.
|
34 |
+
|
35 |
+
Currently this tool supports all models hosted that use `transformers` and `timm`.
|
36 |
+
|
37 |
+
To use this tool pass in the URL or model name of the model you want to calculate the memory usage for,
|
38 |
+
select which framework it originates from ("auto" will try and detect it from the model metadata), and
|
39 |
+
what precisions you want to use."""
|
40 |
+
)
|
41 |
+
out_text = gr.Markdown()
|
42 |
+
out = gr.DataFrame(
|
43 |
+
headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"],
|
44 |
+
interactive=False,
|
45 |
+
visible=False,
|
46 |
+
)
|
47 |
+
with gr.Row():
|
48 |
+
inp = gr.Textbox(label="Model Name or URL", value="bert-base-cased")
|
49 |
+
with gr.Row():
|
50 |
+
library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto")
|
51 |
+
options = gr.CheckboxGroup(
|
52 |
+
["float32", "float16/bfloat16", "int8", "int4"],
|
53 |
+
value="float32",
|
54 |
+
label="Model Precision",
|
55 |
+
)
|
56 |
+
access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)")
|
57 |
+
with gr.Row():
|
58 |
+
btn = gr.Button("Calculate Memory Usage")
|
59 |
+
post_to_hub = gr.Button(
|
60 |
+
value="Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False
|
61 |
+
)
|
62 |
+
|
63 |
+
btn.click(
|
64 |
+
get_results,
|
65 |
+
inputs=[inp, library, options, access_token],
|
66 |
+
outputs=[out_text, out, post_to_hub],
|
67 |
+
)
|
68 |
+
|
69 |
+
post_to_hub.click(report_results, inputs=[inp, library, access_token]).then(
|
70 |
+
lambda: gr.Button.update(visible=False), outputs=post_to_hub
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
demo.launch()
|
src/hub_utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Utilities related to searching and posting on the Hub
|
2 |
+
import os
|
3 |
+
import webbrowser
|
4 |
+
from urllib.parse import urlparse
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from huggingface_hub import HfApi
|
8 |
+
|
9 |
+
from .model_utils import calculate_memory, get_model
|
10 |
+
|
11 |
+
|
12 |
+
def extract_from_url(name: str):
|
13 |
+
"Checks if `name` is a URL, and if so converts it to a model name"
|
14 |
+
is_url = False
|
15 |
+
try:
|
16 |
+
result = urlparse(name)
|
17 |
+
is_url = all([result.scheme, result.netloc])
|
18 |
+
except Exception:
|
19 |
+
is_url = False
|
20 |
+
# Pass through if not a URL
|
21 |
+
if not is_url:
|
22 |
+
return name
|
23 |
+
else:
|
24 |
+
path = result.path
|
25 |
+
return path[1:]
|
26 |
+
|
27 |
+
|
28 |
+
def check_for_discussion(model_name: str):
|
29 |
+
"Checks if an automated discussion has been opened on the model by `model-sizer-bot`"
|
30 |
+
api = HfApi(token=os.environ.get("HUGGINGFACE_API_LOGIN", None))
|
31 |
+
discussions = list(api.get_repo_discussions(model_name))
|
32 |
+
return any(
|
33 |
+
discussion.title == "[AUTOMATED] Model Memory Requirements" and discussion.author == "model-sizer-bot"
|
34 |
+
for discussion in discussions
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def report_results(model_name, library, access_token):
|
39 |
+
"Reports the results of a memory calculation to the model's discussion page, and opens a new tab to it afterwards"
|
40 |
+
model = get_model(model_name, library, access_token)
|
41 |
+
data = calculate_memory(model, ["fp32", "fp16", "int8", "int4"])
|
42 |
+
minimum = data[0]
|
43 |
+
data = pd.DataFrame(data).to_markdown(index=False)
|
44 |
+
|
45 |
+
post = f"""# Model Memory Requirements\n
|
46 |
+
|
47 |
+
You will need about {minimum[1]} VRAM to load this model for inference, and {minimum[3]} VRAM to train it using Adam.
|
48 |
+
|
49 |
+
These calculations were measured from the [Model Memory Utility Space](https://hf.co/spaces/hf-accelerate/model-memory-utility) on the Hub.
|
50 |
+
|
51 |
+
The minimum recommended vRAM needed for this model assumes using [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) and is denoted by the size of the "largest layer".
|
52 |
+
When performing inference, expect to add up to an additional 20% to this, as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). More tests will be performed in the future to get a more accurate benchmark for each model.
|
53 |
+
|
54 |
+
When training with `Adam`, you can expect roughly 4x the reported results to be used. (1x for the model, 1x for the gradients, and 2x for the optimizer).
|
55 |
+
|
56 |
+
## Results:
|
57 |
+
|
58 |
+
{data}
|
59 |
+
"""
|
60 |
+
api = HfApi(token=os.environ.get("HUGGINGFACE_API_LOGIN", None))
|
61 |
+
discussion = api.create_discussion(model_name, "[AUTOMATED] Model Memory Requirements", description=post)
|
62 |
+
webbrowser.open_new_tab(discussion.url)
|
src/model_utils.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Utilities related to loading in and working with models/specific models
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from accelerate.commands.estimate import check_has_model, create_empty_model
|
5 |
+
from accelerate.utils import calculate_maximum_sizes, convert_bytes
|
6 |
+
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
7 |
+
|
8 |
+
from .hub_utils import extract_from_url
|
9 |
+
|
10 |
+
|
11 |
+
DTYPE_MODIFIER = {"float32": 1, "float16/bfloat16": 2, "int8": 4, "int4": 8}
|
12 |
+
|
13 |
+
|
14 |
+
def translate_llama2(text):
|
15 |
+
"Translates llama-2 to its hf counterpart"
|
16 |
+
if not text.endswith("-hf"):
|
17 |
+
return text + "-hf"
|
18 |
+
return text
|
19 |
+
|
20 |
+
|
21 |
+
def get_model(model_name: str, library: str, access_token: str):
|
22 |
+
"Finds and grabs model from the Hub, and initializes on `meta`"
|
23 |
+
if "meta-llama" in model_name:
|
24 |
+
model_name = translate_llama2(model_name)
|
25 |
+
if library == "auto":
|
26 |
+
library = None
|
27 |
+
model_name = extract_from_url(model_name)
|
28 |
+
try:
|
29 |
+
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token)
|
30 |
+
except GatedRepoError:
|
31 |
+
raise gr.Error(
|
32 |
+
f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. "
|
33 |
+
)
|
34 |
+
except RepositoryNotFoundError:
|
35 |
+
raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.")
|
36 |
+
except ValueError:
|
37 |
+
raise gr.Error(
|
38 |
+
f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)"
|
39 |
+
)
|
40 |
+
except (RuntimeError, OSError) as e:
|
41 |
+
library = check_has_model(e)
|
42 |
+
if library != "unknown":
|
43 |
+
raise gr.Error(
|
44 |
+
f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo."
|
45 |
+
)
|
46 |
+
raise gr.Error(
|
47 |
+
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`"
|
48 |
+
)
|
49 |
+
except ImportError:
|
50 |
+
# hacky way to check if it works with `trust_remote_code=False`
|
51 |
+
model = create_empty_model(
|
52 |
+
model_name, library_name=library, trust_remote_code=False, access_token=access_token
|
53 |
+
)
|
54 |
+
except Exception as e:
|
55 |
+
raise gr.Error(
|
56 |
+
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`"
|
57 |
+
)
|
58 |
+
return model
|
59 |
+
|
60 |
+
|
61 |
+
def calculate_memory(model: torch.nn.Module, options: list):
|
62 |
+
"Calculates the memory usage for a model init on `meta` device"
|
63 |
+
total_size, largest_layer = calculate_maximum_sizes(model)
|
64 |
+
|
65 |
+
data = []
|
66 |
+
for dtype in options:
|
67 |
+
dtype_total_size = total_size
|
68 |
+
dtype_largest_layer = largest_layer[0]
|
69 |
+
|
70 |
+
modifier = DTYPE_MODIFIER[dtype]
|
71 |
+
dtype_total_size /= modifier
|
72 |
+
dtype_largest_layer /= modifier
|
73 |
+
|
74 |
+
dtype_training_size = convert_bytes(dtype_total_size * 4)
|
75 |
+
dtype_total_size = convert_bytes(dtype_total_size)
|
76 |
+
dtype_largest_layer = convert_bytes(dtype_largest_layer)
|
77 |
+
data.append(
|
78 |
+
{
|
79 |
+
"dtype": dtype,
|
80 |
+
"Largest Layer or Residual Group": dtype_largest_layer,
|
81 |
+
"Total Size": dtype_total_size,
|
82 |
+
"Training using Adam": dtype_training_size,
|
83 |
+
}
|
84 |
+
)
|
85 |
+
return data
|