Spaces:
Sleeping
Sleeping
File size: 3,361 Bytes
61c166e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
### 1. Imports and class names setup (步驟1) ###
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
class_names = ['pizza', 'steak', 'sushi']
### 2. Model and transforms perparation (步驟2) ###
"""Create EffNetB2 model: 獲得模型定義與變換"""
effnetb2, effnetb2_transforms = create_effnetb2_model(
num_classes=3) # (len(class_names) would also work)
# Load save weights
"""加載權重到模型"""
effnetb2.load_state_dict(
torch.load(
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
map_location=torch.device("cpu") # load the model to the CPU
)
)
### 3. Predict function (步驟3) ###
"""Create predict function: 建立預測函數 (from 7.2)"""
def predict(img) -> Tuple[Dict, float]:
# Start a timer
start_time = timer()
# Transform the input image for use with EffNetB2
"""Transform the target image and add a batch dimension"""
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index
# Put model into eval mode, make prediction (Put model into evaluation mode and turn on inference mode)
effnetb2.eval()
with torch.inference_mode():
# Pass transformed image through the model and turn the prediction logits into probaiblities
"""Pass the transformed image through the model and turn the prediction logits into prediction probabilities"""
pred_probs = torch.softmax(effnetb2(img), dim=1)
# Create a prediction label and prediction probability dictionary (for each prediction class (this is the required format for Gradio's output parameter))
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate pred time (prediction time)
end_time = timer()
pred_time = round(end_time - start_time, 4)
# Return pred dict and pred time (the prediction dictionary and prediction time)
return pred_labels_and_probs, pred_time
### 4. Gradio app (步驟4) ###
"""(from 7.4)"""
# Create title, description and article (strings)
title = "FoodVision Mini 🍕🥩🍣"
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)."
# Create example list (from "examples/" directory)
"""(based on 8.3)"""
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, # maps inputs to outputs #( mapping function from input to output)
inputs=gr.Image(type="pil"), #( what are the inputs?)
outputs=[gr.Label(num_top_classes=3, label="Predictions"), #( what are the outputs?)
gr.Number(label="Prediction time (s)")], #( our fn has two outputs, therefore we have two outputs)
# (Create examples list from "examples/" directory)
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch()
|