Spaces:
Runtime error
Runtime error
File size: 5,531 Bytes
85585d6 e6367a7 51a7d9e 85585d6 51a7d9e caad5c7 e6367a7 85585d6 51a7d9e b48b00e 51a7d9e bd34f0b 6a0c6b9 bd34f0b 82b38de bd34f0b 51a7d9e bd34f0b 51a7d9e 652ef04 51a7d9e 82b38de 85585d6 fd6304d 51a7d9e 85585d6 51a7d9e fd6304d 85585d6 bd34f0b 85585d6 e6367a7 85585d6 51a7d9e 85585d6 51a7d9e 85585d6 51a7d9e 82b38de 51a7d9e 82b38de 51a7d9e 82b38de 51a7d9e 85585d6 51a7d9e bd34f0b 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
model_name = "gemma2:27b"
import os
os.system("sudo apt install lshw")
os.system("curl https://ollama.ai/install.sh | sh")
import nest_asyncio
nest_asyncio.apply()
import asyncio
# Run Async Ollama
# Taken from: https://stackoverflow.com/questions/77697302/how-to-run-ollama-in-google-colab
# NB: You may need to set these depending and get cuda working depending which backend you are running.
# Set environment variable for NVIDIA library
# Set environment variables for CUDA
os.environ['PATH'] += ':/usr/local/cuda/bin'
# Set LD_LIBRARY_PATH to include both /usr/lib64-nvidia and CUDA lib directories
os.environ['LD_LIBRARY_PATH'] = '/usr/lib64-nvidia:/usr/local/cuda/lib64'
async def run_process(cmd):
print('>>> starting', *cmd)
process = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
# define an async pipe function
async def pipe(lines):
async for line in lines:
print(line.decode().strip())
await asyncio.gather(
pipe(process.stdout),
pipe(process.stderr),
)
# call it
await asyncio.gather(pipe(process.stdout), pipe(process.stderr))
import threading
async def start_ollama_serve():
await run_process(['ollama', 'serve'])
def run_async_in_thread(loop, coro):
asyncio.set_event_loop(loop)
loop.run_until_complete(coro)
loop.close()
# Create a new event loop that will run in a new thread
new_loop = asyncio.new_event_loop()
# Start ollama serve in a separate thread so the cell won't block execution
thread = threading.Thread(target=run_async_in_thread, args=(new_loop, start_ollama_serve()))
thread.start()
# Load up model
os.system(f"ollama pull {model_name}")
import copy
import gradio as gr
import spaces
from llama_index.llms.ollama import Ollama
import llama_index
from llama_index.core.llms import ChatMessage
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "google/gemma-2-27b-it"
MODEL_NAME = MODEL_ID.split("/")[-1]
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
gemma2 = Ollama(model=model_name, request_timeout=30.0)
TITLE = "<h1><center>Chatbox</center></h1>"
DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
<center>
<p>Gemma is the large language model built by Google.
<br>
Feel free to test without log.
</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
@spaces.GPU(duration=90)
def stream_chat(message: str, history: list, temperature: float, context_window: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
ChatMessage(
role="user", content=prompt
),
ChatMessage(role="assistant", content=answer),
])
messages = [ChatMessage(role="user", content=message)]
print(f"Conversation is -\n{conversation}")
resp = gemma2.stream_chat(
message = messages,
chat_history = conversation,
top_p=top_p,
top_k=top_k,
repeat_penalty=penalty,
context_window=context_window,
)
for r in resp:
yield r.delta
chatbot = gr.Chatbot(height=600)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=2048,
step=1,
value=1024,
label="Context window",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|