Spaces:
Runtime error
Runtime error
init
Browse files- app.py +149 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import re
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
from transformers import AutoModelForSeq2SeqLM
|
8 |
+
from transformers import AutoProcessor
|
9 |
+
from transformers import pipeline, set_seed
|
10 |
+
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
13 |
+
big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
14 |
+
|
15 |
+
text_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator')
|
16 |
+
|
17 |
+
zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
|
18 |
+
zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
|
19 |
+
en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
|
20 |
+
en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
|
21 |
+
|
22 |
+
|
23 |
+
def load_prompter():
|
24 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
26 |
+
tokenizer.pad_token = tokenizer.eos_token
|
27 |
+
tokenizer.padding_side = "left"
|
28 |
+
return prompter_model, tokenizer
|
29 |
+
|
30 |
+
|
31 |
+
prompter_model, prompter_tokenizer = load_prompter()
|
32 |
+
|
33 |
+
|
34 |
+
def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
|
35 |
+
input_ids = prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
|
36 |
+
eos_id = prompter_tokenizer.eos_token_id
|
37 |
+
outputs = prompter_model.generate(
|
38 |
+
input_ids,
|
39 |
+
do_sample=False,
|
40 |
+
max_new_tokens=max_new_tokens,
|
41 |
+
num_beams=num_beams,
|
42 |
+
num_return_sequences=num_return_sequences,
|
43 |
+
eos_token_id=eos_id,
|
44 |
+
pad_token_id=eos_id,
|
45 |
+
length_penalty=length_penalty
|
46 |
+
)
|
47 |
+
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
48 |
+
result = []
|
49 |
+
for output_text in output_texts:
|
50 |
+
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
|
51 |
+
|
52 |
+
return "\n".join(result)
|
53 |
+
|
54 |
+
|
55 |
+
def translate_zh2en(text):
|
56 |
+
with torch.no_grad():
|
57 |
+
encoded = zh2en_tokenizer([text], return_tensors='pt')
|
58 |
+
sequences = zh2en_model.generate(**encoded)
|
59 |
+
return zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
|
60 |
+
|
61 |
+
|
62 |
+
def translate_en2zh(text):
|
63 |
+
with torch.no_grad():
|
64 |
+
encoded = en2zh_tokenizer([text], return_tensors="pt")
|
65 |
+
sequences = en2zh_model.generate(**encoded)
|
66 |
+
return en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
|
67 |
+
|
68 |
+
|
69 |
+
def text_generate(text_in_english):
|
70 |
+
seed = random.randint(100, 1000000)
|
71 |
+
set_seed(seed)
|
72 |
+
|
73 |
+
result = ""
|
74 |
+
for _ in range(6):
|
75 |
+
sequences = text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
|
76 |
+
list = []
|
77 |
+
for sequence in sequences:
|
78 |
+
line = sequence['generated_text'].strip()
|
79 |
+
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
|
80 |
+
(':', '-', '—')) is False:
|
81 |
+
list.append(line)
|
82 |
+
|
83 |
+
result = "\n".join(list)
|
84 |
+
result = re.sub('[^ ]+\.[^ ]+', '', result)
|
85 |
+
result = result.replace('<', '').replace('>', '')
|
86 |
+
if result != '':
|
87 |
+
break
|
88 |
+
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|
89 |
+
|
90 |
+
|
91 |
+
def get_prompt_from_image(input_image):
|
92 |
+
image = input_image.convert('RGB')
|
93 |
+
pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
|
94 |
+
|
95 |
+
generated_ids = big_model.to(device).generate(pixel_values=pixel_values, max_length=50)
|
96 |
+
generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
97 |
+
print(generated_caption)
|
98 |
+
return generated_caption
|
99 |
+
|
100 |
+
|
101 |
+
with gr.Blocks() as block:
|
102 |
+
with gr.Column():
|
103 |
+
with gr.Tab('文本生成'):
|
104 |
+
with gr.Row():
|
105 |
+
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
|
106 |
+
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
|
107 |
+
|
108 |
+
with gr.Accordion('SD优化参数设置', open=False):
|
109 |
+
max_new_tokens = gr.Slider(1, 255, 75, label='max_new_tokens', step=1)
|
110 |
+
nub_beams = gr.Slider(1, 30, 8, label='num_beams', step=1)
|
111 |
+
num_return_sequences = gr.Slider(1, 30, 8, label='num_return_sequences', step=1)
|
112 |
+
length_penalty = gr.Slider(-1.0, 1.0, -1.0, label='length_penalty')
|
113 |
+
|
114 |
+
generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
|
115 |
+
|
116 |
+
output = gr.Textbox(lines=6, label='瞎编的 Prompt')
|
117 |
+
output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
|
118 |
+
with gr.Row():
|
119 |
+
translate_btn = gr.Button('翻译')
|
120 |
+
generate_prompter_btn = gr.Button('SD优化')
|
121 |
+
gpt_btn = gr.Button('瞎编')
|
122 |
+
|
123 |
+
with gr.Tab('从图片中生成'):
|
124 |
+
with gr.Row():
|
125 |
+
input_image = gr.Image(type='pil')
|
126 |
+
img_btn = gr.Button('提交')
|
127 |
+
output_image = gr.Textbox(lines=6, label='生成的 Prompt')
|
128 |
+
translate_btn.click(
|
129 |
+
fn=translate_zh2en,
|
130 |
+
inputs=input_text,
|
131 |
+
outputs=translate_output
|
132 |
+
)
|
133 |
+
generate_prompter_btn.click(
|
134 |
+
fn=generate_prompter,
|
135 |
+
inputs=[translate_output, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
|
136 |
+
outputs=generate_prompter_output
|
137 |
+
)
|
138 |
+
gpt_btn.click(
|
139 |
+
fn=text_generate,
|
140 |
+
inputs=translate_output,
|
141 |
+
outputs=[output, output_zh]
|
142 |
+
)
|
143 |
+
img_btn.click(
|
144 |
+
fn=get_prompt_from_image,
|
145 |
+
inputs=input_image,
|
146 |
+
outputs=output_image
|
147 |
+
)
|
148 |
+
|
149 |
+
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.27.4
|
2 |
+
#sentencepiece
|
3 |
+
#sacremoses
|