from funasr_onnx import Fsmn_vad, Paraformer, CT_Transformer from transcribe import get_models, transcribe import soundfile import gradio as gr import pytube as pt import datetime import os asr_model, vad_model, punc_model = get_models("./models") def convert_to_wav(in_filename: str) -> str: """Convert the input audio file to a wave file""" out_filename = in_filename + ".wav" if '.mp3' in in_filename: _ = os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}'") else: _ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}'") speech, _ = soundfile.read(out_filename) print(f"load speech shape {speech.shape}") return speech def file_transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload speech = convert_to_wav(file) items = [] vad_model.vad_scorer.AllResetDetection() for item in transcribe(speech, asr_model, vad_model, punc_model): items.append(item) print(item) text = "\n".join(items) return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def youtube_transcribe(yt_url): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) stream = yt.streams.filter(only_audio=True)[0] filename = f"audio.mp3" stream.download(filename=filename) speech=convert_to_wav(filename) items = [] vad_model.vad_scorer.AllResetDetection() for item in transcribe(speech, asr_model, vad_model, punc_model): items.append(item) print(item) text = "\n".join(items) os.system(f"rm -rf audio.mp3 audio.mp3.wav") return html_embed_str, text def run(): gr.close_all() demo = gr.Blocks() mf_transcribe = gr.Interface( fn=file_transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), gr.inputs.Audio(source="upload", type="filepath", optional=True), ], outputs="text", layout="horizontal", theme="huggingface", title="ParaformerX: Copilot for Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length." ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=youtube_transcribe, inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="Demo: Transcribe YouTube", description=( "Transcribe long-form YouTube videos with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch(server_name="0.0.0.0", server_port=7860, enable_queue=True) if __name__ == "__main__": run()