Yuekai Zhang commited on
Commit
e8bec2d
1 Parent(s): 74585b5

update app

Browse files
Files changed (5) hide show
  1. Dockerfile +1 -0
  2. Dockerfile.origin +26 -0
  3. README.md +9 -1
  4. app.py +102 -0
  5. requirements-gradio.txt +11 -0
Dockerfile ADDED
@@ -0,0 +1 @@
 
 
1
+ FROM soar97/torch-paraformer-gradio:22.12
Dockerfile.origin ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM soar97/torch-paraformer:22.12
2
+
3
+ ENV DEBIAN_FRONTEND=noninteractive
4
+
5
+ RUN apt-get update && apt-get install -y ffmpeg
6
+
7
+ COPY ./requirements-gradio.txt ./
8
+
9
+ RUN pip install --no-cache-dir --upgrade -r ./requirements-gradio.txt
10
+
11
+ # Set up a new user named "user" with user ID 1000
12
+ RUN useradd -m -u 1000 user
13
+ # Switch to the "user" user
14
+ USER user
15
+ # Set home to the user's home directory
16
+ ENV HOME=/home/user \
17
+ PATH=/home/user/.local/bin:$PATH
18
+
19
+ # Set the working directory to the user's home directory
20
+ WORKDIR $HOME/app
21
+
22
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
23
+ COPY --chown=user app.py $HOME/app/
24
+ COPY --chown=user --from=soar97/torch-paraformer:22.12 /workspace/ $HOME/app/
25
+
26
+ CMD ["python", "app.py"]
README.md CHANGED
@@ -7,4 +7,12 @@ sdk: docker
7
  pinned: false
8
  ---
9
 
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ Using paraformer large to transcribe long audios.
11
+
12
+ ### Using Docker
13
+ ```
14
+ docker build -f Dockerfile.origin -t soar97/torch-paraformer-gradio:22.12 .
15
+ # docker pull soar97/torch-paraformer-gradio:22.12
16
+
17
+ docker run -it --name "paraformerX" --net host soar97/torch-paraformer-gradio:22.12
18
+ ```
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from funasr_onnx import Fsmn_vad, Paraformer, CT_Transformer
2
+ from transcribe import get_models, transcribe
3
+ import soundfile
4
+ import gradio as gr
5
+ import pytube as pt
6
+ import datetime
7
+ import os
8
+
9
+ asr_model, vad_model, punc_model = get_models("./models")
10
+
11
+ def convert_to_wav(in_filename: str) -> str:
12
+ """Convert the input audio file to a wave file"""
13
+ out_filename = in_filename + ".wav"
14
+ if '.mp3' in in_filename:
15
+ os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}'")
16
+ else:
17
+ _ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}'")
18
+ speech, _ = soundfile.read(out_filename)
19
+ return speech
20
+
21
+ def file_transcribe(microphone, file_upload):
22
+ warn_output = ""
23
+ if (microphone is not None) and (file_upload is not None):
24
+ warn_output = (
25
+ "WARNING: You've uploaded an audio file and used the microphone. "
26
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
27
+ )
28
+
29
+ elif (microphone is None) and (file_upload is None):
30
+ return "ERROR: You have to either use the microphone or upload an audio file"
31
+
32
+ file = microphone if microphone is not None else file_upload
33
+
34
+ speech = convert_to_wav(file)
35
+
36
+ text = "\n".join([item for item in transcribe(speech, asr_model, vad_model, punc_model)])
37
+
38
+ return warn_output + text
39
+
40
+
41
+ def _return_yt_html_embed(yt_url):
42
+ video_id = yt_url.split("?v=")[-1]
43
+ HTML_str = (
44
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
45
+ " </center>"
46
+ )
47
+ return HTML_str
48
+
49
+
50
+ def youtube_transcribe(yt_url):
51
+ yt = pt.YouTube(yt_url)
52
+ html_embed_str = _return_yt_html_embed(yt_url)
53
+ stream = yt.streams.filter(only_audio=True)[0]
54
+ filename = f"audio.mp3"
55
+ stream.download(filename=filename)
56
+
57
+ speech=convert_to_wav(filename)
58
+ text = "\n".join([item for item in transcribe(speech, asr_model, vad_model, punc_model)])
59
+ os.system(f"rm -rf audio.mp3 audio.mp3.wav")
60
+ return html_embed_str, text
61
+
62
+
63
+ def run():
64
+ gr.close_all()
65
+ demo = gr.Blocks()
66
+
67
+ mf_transcribe = gr.Interface(
68
+ fn=file_transcribe,
69
+ inputs=[
70
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
71
+ gr.inputs.Audio(source="upload", type="filepath", optional=True),
72
+ ],
73
+ outputs="text",
74
+ layout="horizontal",
75
+ theme="huggingface",
76
+ title="ParaformerX: Copilot for Audio",
77
+ description=(
78
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length."
79
+ ),
80
+ allow_flagging="never",
81
+ )
82
+
83
+ yt_transcribe = gr.Interface(
84
+ fn=youtube_transcribe,
85
+ inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
86
+ outputs=["html", "text"],
87
+ layout="horizontal",
88
+ theme="huggingface",
89
+ title="Demo: Transcribe YouTube",
90
+ description=(
91
+ "Transcribe long-form YouTube videos with the click of a button! Demo uses the the pretrained paraformer model to transcribe audio files of arbitrary length."
92
+ ),
93
+ allow_flagging="never",
94
+ )
95
+
96
+ with demo:
97
+ gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
98
+
99
+ demo.launch(server_name="0.0.0.0", server_port=7860, enable_queue=True)
100
+
101
+ if __name__ == "__main__":
102
+ run()
requirements-gradio.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ WeTextProcessing
2
+ onnxruntime
3
+ soundfile
4
+ librosa
5
+ scipy
6
+ numpy
7
+ typeguard==2.13.3
8
+ kaldi-native-fbank
9
+ PyYAML>=5.1.2
10
+ gradio
11
+ pytube