Spaces:
Sleeping
Sleeping
import torch | |
import time | |
import gradio as gr | |
import spaces | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3" | |
BATCH_SIZE = 8 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
def load_pipeline(model_name): | |
return pipeline( | |
task="automatic-speech-recognition", | |
model=model_name, | |
chunk_length_s=30, | |
device=device, | |
) | |
pipe = load_pipeline(DEFAULT_MODEL_NAME) | |
def transcribe(inputs, task, model_name): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
global pipe | |
if model_name != pipe.model.name_or_path: | |
pipe = load_pipeline(model_name) | |
start_time = time.time() # Record the start time | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
end_time = time.time() # Record the end time | |
transcription_time = end_time - start_time # Calculate the transcription time | |
# Create the transcription time output with additional information | |
transcription_time_output = ( | |
f"Transcription Time: {transcription_time:.2f} seconds\n" | |
f"Model Used: {model_name}\n" | |
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}" | |
) | |
return text, transcription_time_output | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(type="filepath"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
gr.Textbox( | |
label="Model Name", | |
value=DEFAULT_MODEL_NAME, | |
placeholder="Enter the model name", | |
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny , openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3" | |
), | |
], | |
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")], | |
theme="huggingface", | |
title="Whisper Transcription", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper" | |
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(type="filepath", label="Audio file"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
gr.Textbox( | |
label="Model Name", | |
value=DEFAULT_MODEL_NAME, | |
placeholder="Enter the model name", | |
info="Some available models: openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v2" | |
), | |
], | |
outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")], | |
theme="huggingface", | |
title="Whisper Transcription", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper" | |
" checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) | |
demo.launch(share=True) |