Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from functools import partial | |
from diffusers_patch import OMSPipeline | |
def create_sdxl_lcm_lora_pipe(sd_pipe_name_or_path, oms_name_or_path, lora_name_or_path): | |
from diffusers import StableDiffusionXLPipeline, LCMScheduler | |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(sd_pipe_name_or_path, torch_dtype=torch.float16, variant="fp16", add_watermarker=False).to('cuda') | |
print('successfully load pipe') | |
sd_scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe.load_lora_weights(lora_name_or_path, variant="fp16") | |
pipe = OMSPipeline.from_pretrained(oms_name_or_path, sd_pipeline = sd_pipe, torch_dtype=torch.float16, variant="fp16", trust_remote_code=True, sd_scheduler=sd_scheduler) | |
pipe.to('cuda') | |
return pipe | |
class GradioDemo: | |
def __init__( | |
self, | |
sd_pipe_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0", | |
oms_name_or_path = 'h1t/oms_b_openclip_xl', | |
lora_name_or_path = 'latent-consistency/lcm-lora-sdxl' | |
): | |
self.pipe = create_sdxl_lcm_lora_pipe(sd_pipe_name_or_path, oms_name_or_path, lora_name_or_path) | |
def _inference( | |
self, | |
prompt = None, | |
oms_prompt = None, | |
oms_guidance_scale = 1.0, | |
num_inference_steps = 4, | |
sd_pipe_guidance_scale = 1.0, | |
seed = 1024, | |
): | |
pipe_kwargs = dict( | |
prompt = prompt, | |
num_inference_steps = num_inference_steps, | |
guidance_scale = sd_pipe_guidance_scale, | |
) | |
generator = torch.Generator(device=self.pipe.device).manual_seed(seed) | |
pipe_kwargs.update(oms_flag=False) | |
print(f'raw kwargs: {pipe_kwargs}') | |
image_raw = self.pipe( | |
**pipe_kwargs, | |
generator=generator | |
)['images'][0] | |
generator = torch.Generator(device=self.pipe.device).manual_seed(seed) | |
pipe_kwargs.update(oms_flag=True, oms_prompt=oms_prompt, oms_guidance_scale=1.0) | |
print(f'w/ oms wo/ cfg kwargs: {pipe_kwargs}') | |
image_oms = self.pipe( | |
**pipe_kwargs, | |
generator=generator | |
)['images'][0] | |
oms_guidance_flag = oms_guidance_scale != 1.0 | |
if oms_guidance_flag: | |
generator = torch.Generator(device=self.pipe.device).manual_seed(seed) | |
pipe_kwargs.update(oms_guidance_scale=oms_guidance_scale) | |
print(f'w/ oms +cfg kwargs: {pipe_kwargs}') | |
image_oms_cfg = self.pipe( | |
**pipe_kwargs, | |
generator=generator | |
)['images'][0] | |
else: | |
image_oms_cfg = None | |
return image_raw, image_oms, image_oms_cfg, gr.update(visible=oms_guidance_flag) | |
def mainloop(self): | |
with gr.Blocks() as demo: | |
gr.Markdown("# One More Step Demo") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", value="a cat") | |
oms_prompt = gr.Textbox(label="OMS Prompt", value="orange car") | |
oms_guidance_scale = gr.Slider(label="OMS Guidance Scale", minimum=1.0, maximum=5.0, value=1.5, step=0.1) | |
run_button = gr.Button(value="Generate images") | |
with gr.Accordion("Advanced options", open=False): | |
num_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=4, step=1) | |
sd_guidance_scale = gr.Slider(label="SD Pipe Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=False, value=1024) | |
with gr.Column(): | |
output_raw = gr.Image(label="SDXL w/ LCM-LoRA w/o OMS ") | |
output_oms = gr.Image(label="w/ OMS w/o OMS CFG") | |
with gr.Column(visible=False) as oms_cfg_wd: | |
output_oms_cfg = gr.Image(label=f"w/ OMS w/ OMS CFG") | |
ips = [prompt, oms_prompt, oms_guidance_scale, num_steps, sd_guidance_scale, seed] | |
run_button.click(fn=self._inference, inputs=ips, outputs=[output_raw, output_oms, output_oms_cfg, oms_cfg_wd]) | |
demo.queue(max_size=20) | |
demo.launch() | |
if __name__ == "__main__": | |
gradio_demo = GradioDemo() | |
gradio_demo.mainloop() | |