File size: 37,523 Bytes
d0a7bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.activations import get_activation
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import (
    GaussianFourierProjection,
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import (
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
    UNetMidBlock2DSimpleCrossAttn,
    UpBlock2D,
    get_down_block,
    get_up_block,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    The output of [`UNet2DConditionModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor = None


class UNet2DConditionWoCTModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
    r"""
    A conditional 2D UNet model that takes a noisy sample, conditional state, but w/o a timestep and returns a sample
    shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
            Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
            The tuple of upsample blocks to use.
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
            If `None`, normalization and activation layers is skipped in post-processing.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
        transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
        only_cross_attention: Union[bool, Tuple[bool]] = False,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: Union[int, Tuple[int]] = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        encoder_hid_dim: Optional[int] = None,
        encoder_hid_dim_type: Optional[str] = None,
        attention_head_dim: Union[int, Tuple[int]] = 8,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        resnet_out_scale_factor: int = 1.0,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
        mid_block_only_cross_attention: Optional[bool] = None,
        cross_attention_norm: Optional[str] = None,
    ):
        super().__init__()

        self.sample_size = sample_size

        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

        # input
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
        else:
            self.encoder_hid_proj = None

        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(only_cross_attention, bool):
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

            only_cross_attention = [only_cross_attention] * len(down_block_types)

        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

        # disable time cond
        time_embed_dim = None
        blocks_time_embed_dim = time_embed_dim
        resnet_time_scale_shift = None
        resnet_skip_time_act = False

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block[i],
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=blocks_time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim[i],
                num_attention_heads=num_attention_heads[i],
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
            )
            self.down_blocks.append(down_block)

        # mid
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                transformer_layers_per_block=transformer_layers_per_block[-1],
                in_channels=block_out_channels[-1],
                temb_channels=blocks_time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim[-1],
                num_attention_heads=num_attention_heads[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=blocks_time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim[-1],
                attention_head_dim=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
                skip_time_act=resnet_skip_time_act,
                only_cross_attention=mid_block_only_cross_attention,
                cross_attention_norm=cross_attention_norm,
            )
        elif mid_block_type is None:
            self.mid_block = None
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))
        reversed_layers_per_block = list(reversed(layers_per_block))
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
        reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
        only_cross_attention = list(reversed(only_cross_attention))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=reversed_layers_per_block[i] + 1,
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=blocks_time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=reversed_cross_attention_dim[i],
                num_attention_heads=reversed_num_attention_heads[i],
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )

            self.conv_act = get_activation(act_fn)

        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

    def set_attention_slice(self, slice_size):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_sliceable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_sliceable_dims(module)

        num_sliceable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_sliceable_layers * [1]

        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

    def forward(
        self,
        sample: torch.FloatTensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
        The [`UNet2DConditionModel`] forward method.

        Args:
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            encoder_attention_mask (`torch.Tensor`):
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time (skip)
        emb = None

        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None

        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)

                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    **additional_residuals,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

                if is_adapter and len(down_block_additional_residuals) > 0:
                    sample += down_block_additional_residuals.pop(0)

            down_block_res_samples += res_samples

        if is_controlnet:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
                encoder_attention_mask=encoder_attention_mask,
            )

        if is_controlnet:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample)