guimcc
New App
fe7ff55
raw
history blame
6.8 kB
import gradio as gr
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
from torchvision.transforms import ColorJitter, functional as F
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import torch
import torch.nn as nn
from datasets import load_dataset
import evaluate
# Define the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the models
original_model_id = "guimCC/segformer-v0-gta"
lora_model_id = "guimCC/segformer-v0-gta-cityscapes"
original_model = SegformerForSemanticSegmentation.from_pretrained(original_model_id).to(device)
lora_model = SegformerForSemanticSegmentation.from_pretrained(lora_model_id).to(device)
# Load the dataset and slice it
dataset = load_dataset("Chris1/cityscapes", split="validation")
sampled_dataset = [dataset[i] for i in range(10)] # Select the first 10 examples
# Define your custom image processor
jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
# Initialize mIoU metric
metric = evaluate.load("mean_iou")
# Define id2label and processor if not already defined
id2label = {
0: 'road', 1: 'sidewalk', 2: 'building', 3: 'wall', 4: 'fence', 5: 'pole',
6: 'traffic light', 7: 'traffic sign', 8: 'vegetation', 9: 'terrain',
10: 'sky', 11: 'person', 12: 'rider', 13: 'car', 14: 'truck', 15: 'bus',
16: 'train', 17: 'motorcycle', 18: 'bicycle', 19: 'ignore'
}
processor = SegformerImageProcessor()
# Cityscapes color palette
palette = np.array([
[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153],
[153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152],
[70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], [0, 0, 0]
])
def handle_grayscale_image(image):
np_image = np.array(image)
if np_image.ndim == 2: # Grayscale image
np_image = np.tile(np.expand_dims(np_image, -1), (1, 1, 3))
return Image.fromarray(np_image)
def preprocess_image(image):
image = handle_grayscale_image(image)
image = jitter(image) # Apply color jitter
pixel_values = F.to_tensor(image).unsqueeze(0) # Convert to tensor and add batch dimension
return pixel_values.to(device)
def postprocess_predictions(logits):
logits = logits.squeeze().detach().cpu().numpy()
segmentation = np.argmax(logits, axis=0).astype(np.uint8) # Convert to 8-bit integer
return segmentation
def compute_miou(logits, labels):
with torch.no_grad():
logits_tensor = torch.from_numpy(logits)
# Scale the logits to the size of the label
logits_tensor = nn.functional.interpolate(
logits_tensor,
size=labels.shape[-2:],
mode="bilinear",
align_corners=False,
).argmax(dim=1)
pred_labels = logits_tensor.detach().cpu().numpy()
# Ensure the shapes of pred_labels and labels match
if pred_labels.shape != labels.shape:
labels = np.resize(labels, pred_labels.shape)
pred_labels = [pred_labels] # Wrap in a list
labels = [labels] # Wrap in a list
metrics = metric.compute(
predictions=pred_labels,
references=labels,
num_labels=len(id2label),
ignore_index=19,
reduce_labels=processor.do_reduce_labels,
)
return metrics['mean_iou']
def apply_color_palette(segmentation):
colored_segmentation = palette[segmentation]
return Image.fromarray(colored_segmentation.astype(np.uint8))
def create_legend():
# Define font and its size
try:
font = ImageFont.truetype("arial.ttf", 15)
except IOError:
font = ImageFont.load_default()
# Calculate legend dimensions
num_classes = len(id2label)
legend_height = 20 * ((num_classes + 1) // 2) # Two items per row
legend_width = 250
# Create a blank image for the legend
legend = Image.new("RGB", (legend_width, legend_height), (255, 255, 255))
draw = ImageDraw.Draw(legend)
# Draw each color and its label
for i, (class_id, class_name) in enumerate(id2label.items()):
color = tuple(palette[class_id])
x = (i % 2) * 120
y = (i // 2) * 20
draw.rectangle([x, y, x + 20, y + 20], fill=color)
draw.text((x + 30, y + 5), class_name, fill=(0, 0, 0), font=font)
return legend
def inference(index, a):
"""Run inference on the input image with both models."""
image = sampled_dataset[index]['image'] # Fetch image from the sampled dataset
pixel_values = preprocess_image(image)
# Original model inference
with torch.no_grad():
original_outputs = original_model(pixel_values=pixel_values)
original_segmentation = postprocess_predictions(original_outputs.logits)
# LoRA model inference
with torch.no_grad():
lora_outputs = lora_model(pixel_values=pixel_values)
lora_segmentation = postprocess_predictions(lora_outputs.logits)
# Compute mIoU
true_labels = np.array(sampled_dataset[index]['semantic_segmentation'])
original_miou = compute_miou(original_outputs.logits.detach().cpu().numpy(), true_labels)
lora_miou = compute_miou(lora_outputs.logits.detach().cpu().numpy(), true_labels)
# original_miou = 0
# lora_miou = 0
# Apply color palette
original_segmentation_image = apply_color_palette(original_segmentation)
lora_segmentation_image = apply_color_palette(lora_segmentation)
# Create legend
legend = create_legend()
# Return the original image, the segmentations, and mIoU
return (
image,
original_segmentation_image,
lora_segmentation_image,
legend,
f"Original Model mIoU: {original_miou:.2f}",
f"LoRA Model mIoU: {lora_miou:.2f}"
)
# Create a list of image options for the user to select from
image_options = [(f"Image {i}", i) for i in range(len(sampled_dataset))]
# Create the Gradio interface
iface = gr.Interface(
fn=inference,
inputs=[
gr.Dropdown(label="Select Image", choices=image_options),
gr.Image(type="pil", label="Legend", value=create_legend)
],
outputs=[
gr.Image(type="pil", label="Selected Image"),
gr.Image(type="pil", label="Original Model Output"),
gr.Image(type="pil", label="LoRA Model Output"),
gr.Textbox(label="Original Model mIoU"),
gr.Textbox(label="LoRA Model mIoU")
],
title="Segformer Cityscapes Inference",
description="Select an image from the Cityscapes dataset to see the segmentation results from both the original and fine-tuned Segformer models.",
)
# Launch the interface
iface.launch()