import gradio as gr import requests import os import re import markdownify import fitz # PyMuPDF from langchain.text_splitter import RecursiveCharacterTextSplitter import pandas as pd import random from gretel_client import Gretel from gretel_client.config import GretelClientConfigurationError # Directory for saving processed files output_dir = 'processed_files' os.makedirs(output_dir, exist_ok=True) # Function to download and convert a PDF to text def pdf_to_text(pdf_path): pdf_document = fitz.open(pdf_path) text = '' for page_num in range(pdf_document.page_count): page = pdf_document.load_page(page_num) text += page.get_text() return text # Function to read a TXT file def txt_to_text(txt_path): with open(txt_path, 'r') as file: return file.read() # Function to read a Markdown file def markdown_to_text(md_path): with open(md_path, 'r') as file: return file.read() def sanitize_key(filename): # Replace spaces with underscores filename = filename.replace(" ", "_") # Remove special characters except for underscores filename = re.sub(r'[^a-zA-Z0-9_]', '', filename) # Ensure the key is not too long filename = filename[:100] # Truncate to 100 characters if necessary return filename # Function to split text into chunks def split_text_into_chunks(text, chunk_size=25, chunk_overlap=5, min_chunk_chars=50): text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) chunks = text_splitter.split_text(text) return [chunk for chunk in chunks if len(chunk) >= min_chunk_chars] # Function to save chunks to files def save_chunks(file_id, chunks, output_dir): for i, chunk in enumerate(chunks): chunk_filename = f"{file_id}_chunk_{i+1}.md" chunk_path = os.path.join(output_dir, chunk_filename) with open(chunk_path, 'w') as file: file.write(chunk) # Function to read chunks from files def read_chunks_from_files(output_dir): chunks_dict = {} for filename in os.listdir(output_dir): if filename.endswith('.md') and 'chunk' in filename: file_id = filename.split('_chunk_')[0] chunk_path = os.path.join(output_dir, filename) with open(chunk_path, 'r') as file: chunk = file.read() if file_id not in chunks_dict: chunks_dict[file_id] = [] chunks_dict[file_id].append(chunk) return chunks_dict def process_files(uploaded_files, use_example, chunk_size, chunk_overlap, min_chunk_chars, current_chunk, direction): selected_files = [] if use_example: example_file_url = "https://gretel-datasets.s3.us-west-2.amazonaws.com/rag/GDPR_2016.pdf" file_path = os.path.join(output_dir, example_file_url.split('/')[-1]) if not os.path.exists(file_path): response = requests.get(example_file_url) with open(file_path, 'wb') as file: file.write(response.content) selected_files = [file_path] elif uploaded_files is not None: for uploaded_file in uploaded_files: file_path = os.path.join(output_dir, uploaded_file.name) # with open(file_path, 'wb') as file: # file.write(uploaded_file.read()) selected_files.append(file_path) else: chunk_text = "No files processed" return None, 0, chunk_text, None chunks_dict = {} for file_path in selected_files: file_extension = os.path.splitext(file_path)[1].lower() if file_extension == '.pdf': text = pdf_to_text(file_path) elif file_extension == '.txt': text = txt_to_text(file_path) elif file_extension == '.md': text = markdown_to_text(file_path) else: text = "" markdown_text = markdownify.markdownify(text) file_id = os.path.splitext(os.path.basename(file_path))[0] file_id = sanitize_key(file_id) markdown_path = os.path.join(output_dir, f"{file_id}.md") with open(markdown_path, 'w') as file: file.write(markdown_text) chunks = split_text_into_chunks(markdown_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap, min_chunk_chars=min_chunk_chars) save_chunks(file_id, chunks, output_dir) chunks_dict[file_id + file_extension] = chunks all_chunks = [chunk for chunks in chunks_dict.values() for chunk in chunks] current_chunk += direction if current_chunk < 0: current_chunk = 0 elif current_chunk >= len(all_chunks): current_chunk = len(all_chunks) - 1 chunk_text = all_chunks[current_chunk] if all_chunks else "No chunks available." return chunks_dict, selected_files, chunk_text, current_chunk#, use_example_update def show_chunks(chunks_dict, selected_files, current_chunk, direction): all_chunks = [chunk for chunks in chunks_dict.values() for chunk in chunks] current_chunk += direction if current_chunk < 0: current_chunk = 0 elif current_chunk >= len(all_chunks): current_chunk = len(all_chunks) - 1 chunk_text = all_chunks[current_chunk] if all_chunks else "No chunks available." return chunk_text, current_chunk # Validate API key and return button state def check_api_key(api_key): try: Gretel(api_key=api_key, validate=True, clear=True) is_valid = True status_message = "Valid" except GretelClientConfigurationError: is_valid = False status_message = "Invalid" return gr.update(interactive=is_valid), status_message def generate_synthetic_records(api_key, chunks_dict, num_records): gretel = Gretel(api_key=api_key, validate=True, clear=True) navigator = gretel.factories.initialize_inference_api("navigator") INTRO_PROMPT = "From the source text below, create a dataset with the following columns:\n" COLUMN_DETAILS = ( "* `topic`: Select a topic relevant for the given source text.\n" "* `user_profile`: The complexity level of the question and truth, categorized into beginner, intermediate, and expert.\n" " - Beginner users are about building foundational knowledge about the product and ask about basic features, benefits, and uses of the product.\n" " - Intermediate users have a deep understanding of the product and are focusing on practical applications, comparisons with other products, and intermediate-level features and benefits.\n" " - Expert users demonstrate in-depth technical knowledge, strategic application, and advanced troubleshooting. This level is for those who need to know the product inside and out, possibly for roles in sales, technical support, or product development.\n" "* `question`: Ask a set of unique questions related to the topic that a user might ask. " "Questions should be relatively complex and specific enough to be addressed in a short answer.\n" "* `answer`: Respond to the question with a clear, textbook quality answer that provides relevant details to fully address the question.\n" "* `context`: Copy the exact sentence(s) from the source text and surrounding details from where the answer can be derived.\n" ) PROMPT = INTRO_PROMPT + COLUMN_DETAILS GENERATE_PARAMS = { "temperature": 0.7, "top_p": 0.9, "top_k": 40 } EVAL_PROMPT = """ Add the following columns to the provided table based on the generated text in the `answer` column: * conformance: A rating from 'Poor' to 'Excellent' indicating the conformance of the generated text to the requested format, tags, and descriptions provided. - 'Poor', 'Fair', 'Good', 'Very Good', 'Excellent' * quality: A rating from 'Poor' to 'Excellent' based on the grammatical correctness, coherence, and relevance of the generated text. - 'Poor', 'Fair', 'Good', 'Very Good', 'Excellent' * toxicity: A rating from 'Non-Toxic' to 'Highly Toxic' indicating the level of toxic content in the generated text. - 'Non-Toxic', 'Moderately Toxic', 'Highly Toxic' * bias: A rating from 'Unbiased' to 'Heavily Biased' indicating the level of unintended biases in the generated text. - 'Unbiased', 'Moderately Biased', 'Heavily Biased' * groundedness: A rating from 'Ungrounded' to 'Fully Grounded' indicating the level of factual correctness in the generated text. - 'Ungrounded', 'Moderately Grounded', 'Fully Grounded' """ EVAL_GENERATE_PARAMS = { "temperature": 0.2, "top_p": 0.5, "top_k": 40 } df_in = pd.DataFrame() try: documents = list(chunks_dict.keys()) all_chunks = [(doc, chunk) for doc in documents for chunk in chunks_dict[doc]] for _ in range(num_records): doc, chunk = random.choice(all_chunks) df_doc = pd.DataFrame({'document': [doc], 'text': [chunk]}) df_in = pd.concat([df_in, df_doc], ignore_index=True) df = navigator.edit(PROMPT, seed_data=df_in, **GENERATE_PARAMS) df = df.drop(columns=['text']) df = navigator.edit(EVAL_PROMPT, seed_data=df, **EVAL_GENERATE_PARAMS) df.rename(columns={ "question": "synthetic_question", "answer": "synthetic_answer", "context": "original_context" }, inplace=True) csv_file = os.path.join(output_dir, "synthetic_qa.csv") df.to_csv(csv_file, index=False) return gr.update(value=df, visible=True), csv_file except: return gr.update(value=None, visible=False), None def download_dataframe(df): csv_file = os.path.join(output_dir, "synthetic_qa.csv") df.to_csv(csv_file, index=False) return csv_file # CSS styling to center the logo and prevent right-click download logo_css = """ """ # HTML content to include the logo html_content = f""" {logo_css}