Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -42,13 +42,21 @@ def get_labels(response_list):
|
|
42 |
print(f"Starting to load the model to memory")
|
43 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
44 |
|
|
|
|
|
45 |
m = AutoModelForCausalLM.from_pretrained(
|
46 |
-
"google/gemma-2b-it",
|
|
|
|
|
|
|
|
|
47 |
embedding_func=m.get_input_embeddings()
|
48 |
embedding_func.weight.requires_grad=False
|
49 |
m = m.to(device)
|
50 |
|
51 |
-
tok = AutoTokenizer.from_pretrained("google/gemma-2b-it",
|
|
|
|
|
52 |
tok.padding_side = "left"
|
53 |
tok.pad_token_id = tok.eos_token_id
|
54 |
# using CUDA for an optimal experience
|
|
|
42 |
print(f"Starting to load the model to memory")
|
43 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
44 |
|
45 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
46 |
+
|
47 |
m = AutoModelForCausalLM.from_pretrained(
|
48 |
+
"google/gemma-2b-it",
|
49 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
50 |
+
trust_remote_code=True,token=HF_TOKEN
|
51 |
+
)
|
52 |
+
|
53 |
embedding_func=m.get_input_embeddings()
|
54 |
embedding_func.weight.requires_grad=False
|
55 |
m = m.to(device)
|
56 |
|
57 |
+
tok = AutoTokenizer.from_pretrained("google/gemma-2b-it",
|
58 |
+
trust_remote_code=True,token=HF_TOKEN
|
59 |
+
)
|
60 |
tok.padding_side = "left"
|
61 |
tok.pad_token_id = tok.eos_token_id
|
62 |
# using CUDA for an optimal experience
|