gaparmar commited on
Commit
c2c05b2
1 Parent(s): 98322fb

adding source

Browse files
src/__pycache__/image_prep.cpython-310.pyc ADDED
Binary file (544 Bytes). View file
 
src/__pycache__/model.cpython-310.pyc ADDED
Binary file (699 Bytes). View file
 
src/__pycache__/pix2pix_turbo.cpython-310.pyc ADDED
Binary file (6.84 kB). View file
 
src/image_prep.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ import cv2
4
+
5
+
6
+ def canny_from_pil(image, low_threshold=100, high_threshold=200):
7
+ image = np.array(image)
8
+ image = cv2.Canny(image, low_threshold, high_threshold)
9
+ image = image[:, :, None]
10
+ image = np.concatenate([image, image, image], axis=2)
11
+ control_image = Image.fromarray(image)
12
+ return control_image
src/model.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, sys, pdb
2
+
3
+ import diffusers
4
+ from transformers import AutoTokenizer, PretrainedConfig
5
+ from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
6
+
7
+
8
+ def make_1step_sched():
9
+ noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/sd-turbo", subfolder="scheduler")
10
+ noise_scheduler_1step = DDPMScheduler.from_pretrained("stabilityai/sd-turbo", subfolder="scheduler")
11
+ noise_scheduler_1step.set_timesteps(1, device="cuda")
12
+ noise_scheduler_1step.alphas_cumprod = noise_scheduler_1step.alphas_cumprod.cuda()
13
+ return noise_scheduler_1step
src/pix2pix_turbo.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, requests
2
+ import pdb
3
+ import copy
4
+ from tqdm import tqdm
5
+ import torch
6
+ from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel
7
+ from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
8
+ from diffusers.utils.peft_utils import set_weights_and_activate_adapters
9
+ from peft import LoraConfig
10
+ from .model import make_1step_sched
11
+
12
+
13
+ def my_vae_encoder_fwd(self, sample):
14
+ r"""The forward method of the `Encoder` class."""
15
+ sample = self.conv_in(sample)
16
+ l_blocks = []
17
+ # down
18
+ for down_block in self.down_blocks:
19
+ l_blocks.append(sample)
20
+ sample = down_block(sample)
21
+ # middle
22
+ sample = self.mid_block(sample)
23
+ sample = self.conv_norm_out(sample)
24
+ sample = self.conv_act(sample)
25
+ sample = self.conv_out(sample)
26
+ self.current_down_blocks = l_blocks
27
+ return sample
28
+
29
+
30
+ def my_vae_decoder_fwd(self,sample, latent_embeds = None):
31
+ sample = self.conv_in(sample)
32
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
33
+ # middle
34
+ sample = self.mid_block(sample, latent_embeds)
35
+ sample = sample.to(upscale_dtype)
36
+ if not self.ignore_skip:
37
+ skip_convs = [self.skip_conv_1, self.skip_conv_2, self.skip_conv_3, self.skip_conv_4]
38
+ # up
39
+ for idx, up_block in enumerate(self.up_blocks):
40
+ skip_in = skip_convs[idx](self.incoming_skip_acts[::-1][idx])
41
+ # add skip
42
+ sample = sample + skip_in
43
+ sample = up_block(sample, latent_embeds)
44
+ else:
45
+ for idx, up_block in enumerate(self.up_blocks):
46
+ sample = up_block(sample, latent_embeds)
47
+ # post-process
48
+ if latent_embeds is None:
49
+ sample = self.conv_norm_out(sample)
50
+ else:
51
+ sample = self.conv_norm_out(sample, latent_embeds)
52
+ sample = self.conv_act(sample)
53
+ sample = self.conv_out(sample)
54
+ return sample
55
+
56
+
57
+ class TwinConv(torch.nn.Module):
58
+ def __init__(self, convin_pretrained, convin_curr):
59
+ super(TwinConv, self).__init__()
60
+ self.conv_in_pretrained = copy.deepcopy(convin_pretrained)
61
+ self.conv_in_curr = copy.deepcopy(convin_curr)
62
+ self.r = None
63
+ def forward(self, x):
64
+ x1 = self.conv_in_pretrained(x).detach()
65
+ x2 = self.conv_in_curr(x)
66
+ return x1*(1-self.r) + x2*(self.r)
67
+
68
+
69
+ class Pix2Pix_Turbo(torch.nn.Module):
70
+ def __init__(self, name, ckpt_folder="checkpoints"):
71
+ super().__init__()
72
+ self.tokenizer = AutoTokenizer.from_pretrained("stabilityai/sd-turbo",subfolder="tokenizer")
73
+ self.text_encoder = CLIPTextModel.from_pretrained("stabilityai/sd-turbo", subfolder="text_encoder").cuda()
74
+ self.sched = make_1step_sched()
75
+
76
+ vae = AutoencoderKL.from_pretrained("stabilityai/sd-turbo", subfolder="vae")
77
+ unet = UNet2DConditionModel.from_pretrained("stabilityai/sd-turbo", subfolder="unet")
78
+
79
+ if name=="canny_to_image":
80
+ lora_rank = 8
81
+ P_UNET_SD="/home/gparmar/code/single_step_translation/output/paired/canny_canny_midjourney_512_512/sd21_turbo_direct_edge_withskip_opt_lora_8_proj/l2_lpips_gan_vagan_clip_224_patch_multilevel_sigmoid/lr_5e-5_l2_0.25_lpips_1_0.1_CLIPSIM_1.0/1node_8gpu_no_BS_1_GRAD_ACC_2/checkpoint-7501/unet_sd.pkl"
82
+ P_VAE_ENC_SD="/home/gparmar/code/single_step_translation/output/paired/canny_canny_midjourney_512_512/sd21_turbo_direct_edge_withskip_opt_lora_8_proj/l2_lpips_gan_vagan_clip_224_patch_multilevel_sigmoid/lr_5e-5_l2_0.25_lpips_1_0.1_CLIPSIM_1.0/1node_8gpu_no_BS_1_GRAD_ACC_2/checkpoint-7501/sd_vae_enc.pkl"
83
+ P_VAE_DEC_SD="/home/gparmar/code/single_step_translation/output/paired/canny_canny_midjourney_512_512/sd21_turbo_direct_edge_withskip_opt_lora_8_proj/l2_lpips_gan_vagan_clip_224_patch_multilevel_sigmoid/lr_5e-5_l2_0.25_lpips_1_0.1_CLIPSIM_1.0/1node_8gpu_no_BS_1_GRAD_ACC_2/checkpoint-7501/sd_vae_dec.pkl"
84
+ unet_lora_config = LoraConfig(r=lora_rank, init_lora_weights="gaussian", target_modules=[
85
+ "to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_shortcut", "conv_out",
86
+ "proj_in", "proj_out", "ff.net.2", "ff.net.0.proj"]
87
+ )
88
+
89
+ if name=="sketch_to_image_stochastic":
90
+ # download from url
91
+ url = "https://www.cs.cmu.edu/~clean-fid/tmp/img2img_turbo/ckpt/sketch_to_image_stochastic.pkl"
92
+ os.makedirs(ckpt_folder, exist_ok=True)
93
+ outf = os.path.join(ckpt_folder, "sketch_to_image_stochastic.pkl")
94
+ if not os.path.exists(outf):
95
+ print(f"Downloading checkpoint to {outf}")
96
+ response = requests.get(url, stream=True)
97
+ total_size_in_bytes= int(response.headers.get('content-length', 0))
98
+ block_size = 1024 # 1 Kibibyte
99
+ progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
100
+ with open(outf, 'wb') as file:
101
+ for data in response.iter_content(block_size):
102
+ progress_bar.update(len(data))
103
+ file.write(data)
104
+ progress_bar.close()
105
+ if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
106
+ print("ERROR, something went wrong")
107
+ print(f"Downloaded successfully to {outf}")
108
+ # p_ckpt = "/home/gparmar/code/img2img-turbo/single_step_translation/notebooks/DEMO/sketch_to_image_stochastic.pkl"
109
+ p_ckpt = outf
110
+ sd = torch.load(p_ckpt, map_location="cpu")
111
+ unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
112
+ convin_pretrained = copy.deepcopy(unet.conv_in)
113
+ unet.conv_in = TwinConv(convin_pretrained, unet.conv_in)
114
+
115
+ vae.encoder.forward = my_vae_encoder_fwd.__get__(vae.encoder, vae.encoder.__class__)
116
+ vae.decoder.forward = my_vae_decoder_fwd.__get__(vae.decoder, vae.decoder.__class__)
117
+ # add the skip connection convs
118
+ vae.decoder.skip_conv_1 = torch.nn.Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
119
+ vae.decoder.skip_conv_2 = torch.nn.Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
120
+ vae.decoder.skip_conv_3 = torch.nn.Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
121
+ vae.decoder.skip_conv_4 = torch.nn.Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
122
+ vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
123
+ vae.decoder.ignore_skip = False
124
+ vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
125
+ unet.add_adapter(unet_lora_config)
126
+ unet.load_state_dict(sd["state_dict_unet"])
127
+ unet.enable_xformers_memory_efficient_attention()
128
+
129
+ vae.load_state_dict(sd["state_dict_vae"])
130
+ unet.to("cuda")
131
+ vae.to("cuda")
132
+ unet.eval()
133
+ vae.eval()
134
+
135
+ self.unet, self.vae = unet, vae
136
+ self.timesteps = torch.tensor([999], device="cuda").long()
137
+
138
+
139
+ def forward(self, c_t, prompt, deterministic=True, r=1.0, noise_map=None):
140
+ # encode the text prompt
141
+ caption_tokens = self.tokenizer(prompt, max_length=self.tokenizer.model_max_length,
142
+ padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
143
+ caption_enc = self.text_encoder(caption_tokens)[0]
144
+
145
+ if deterministic:
146
+ encoded_control = self.vae.encode(c_t).latent_dist.sample()*self.vae.config.scaling_factor
147
+ model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=caption_enc,).sample
148
+ x_denoised = self.sched.step(model_pred, self.timesteps, encoded_control, return_dict=True).prev_sample
149
+ self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
150
+ output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor ).sample).clamp(-1,1)
151
+ else:
152
+ # scale the lora weights based on the r value
153
+ self.unet.set_adapters(["default"], weights=[r])
154
+ set_weights_and_activate_adapters(self.vae, ["vae_skip"], [r])
155
+ encoded_control = self.vae.encode(c_t).latent_dist.sample()*self.vae.config.scaling_factor
156
+ # combine the input and noise
157
+ unet_input = encoded_control*r + noise_map*(1-r)
158
+ self.unet.conv_in.r = r
159
+ unet_output = self.unet(unet_input, self.timesteps, encoder_hidden_states=caption_enc,).sample
160
+ self.unet.conv_in.r = None
161
+ x_denoised = self.sched.step(unet_output, self.timesteps, unet_input, return_dict=True).prev_sample
162
+ self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
163
+ output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor ).sample).clamp(-1,1)
164
+
165
+ return output_image
166
+
167
+
168
+