FLUX-Prompt-Generator / caption_models.py
gokaygokay's picture
Update caption_models.py
707a6ed verified
import spaces
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration, AutoModel, AutoTokenizer, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
import numpy as np
import os
from datetime import datetime
import subprocess
import torch.nn as nn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN", None)
# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True)
# Initialize Qwen2-VL-2B model
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval()
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
# Add these new imports and constants
CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = "wpkklhc6"
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
x = self.linear1(vision_outputs)
x = self.activation(x)
x = self.linear2(x)
return x
# Load CLIP
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to(device)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False, token=HF_TOKEN)
# LLM
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16, token=HF_TOKEN)
text_model.eval()
# Image Adapter
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(f"{CHECKPOINT_PATH}/image_adapter.pt", map_location="cpu"))
image_adapter.eval()
image_adapter.to(device)
@spaces.GPU
def florence_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<MORE_DETAILED_CAPTION>"]
def array_to_image_path(image_array):
img = Image.fromarray(np.uint8(image_array))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
full_path = os.path.abspath(filename)
return full_path
@spaces.GPU
def qwen_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(np.uint8(image))
image_path = array_to_image_path(np.array(image))
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": "Describe this image in great detail in one paragraph."},
],
}
]
text = qwen_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = qwen_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device)
generated_ids = qwen_model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = qwen_processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
@spaces.GPU
@torch.no_grad()
def joycaption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(np.uint8(image))
# Preprocess image
image = clip_processor(images=image, return_tensors='pt').pixel_values
image = image.to(device)
# Tokenize the prompt
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
# Embed image
with torch.amp.autocast_mode.autocast(device_type='cuda', enabled=True):
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to(device)
# Embed prompt
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=device, dtype=torch.int64))
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
], dim=1).to(device)
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id:
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
return caption.strip()